TY - GEN

T1 - Overturning of a solitary wave on a continental shelf

AU - Huang, Ching Jer

AU - Lin, Chun Yuan

PY - 2008/1/1

Y1 - 2008/1/1

N2 - In this study numerical model was developed to solve the unsteady two-dimensional Reynolds Averaged Navier-Stokes (RANS) equations and the turbulent k-ε equations for simulating the evolution of a breaking solitary wave above a continental shelf. A hybrid particle level set method was adopted to capture the complex free surface evolution, beginning from the steepening of the wave profile to the wave breaking, which was accompanied by the air entrainment, then followed by the successive splash-ups. The governing equations were discretized by the finite-analytic method and the SIMPLER algorithm was used to calculate the coupled velocity and pressure fields. Accuracy of the advection scheme of the level set method was confirmed by solving the Zalesak problem. Before we proceed to investigate the evolution of breaking solitary wave on a continental shelf, our numerical results were compared with the experimental data. After having verified the accuracy of the present numerical scheme, both the evolution and kinematic properties of the overturning waves on the shelf have been revealed to details. Furthermore, our numerical simulation shows that during the overturning of the solitary wave, the maximum velocity of the fluid particles occurs at the region near the second reattachment point with a high speed of 1.84 √gh.

AB - In this study numerical model was developed to solve the unsteady two-dimensional Reynolds Averaged Navier-Stokes (RANS) equations and the turbulent k-ε equations for simulating the evolution of a breaking solitary wave above a continental shelf. A hybrid particle level set method was adopted to capture the complex free surface evolution, beginning from the steepening of the wave profile to the wave breaking, which was accompanied by the air entrainment, then followed by the successive splash-ups. The governing equations were discretized by the finite-analytic method and the SIMPLER algorithm was used to calculate the coupled velocity and pressure fields. Accuracy of the advection scheme of the level set method was confirmed by solving the Zalesak problem. Before we proceed to investigate the evolution of breaking solitary wave on a continental shelf, our numerical results were compared with the experimental data. After having verified the accuracy of the present numerical scheme, both the evolution and kinematic properties of the overturning waves on the shelf have been revealed to details. Furthermore, our numerical simulation shows that during the overturning of the solitary wave, the maximum velocity of the fluid particles occurs at the region near the second reattachment point with a high speed of 1.84 √gh.

UR - http://www.scopus.com/inward/record.url?scp=58449122797&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=58449122797&partnerID=8YFLogxK

M3 - Conference contribution

AN - SCOPUS:58449122797

SN - 9781880653708

T3 - Proceedings of the International Offshore and Polar Engineering Conference

SP - 782

EP - 787

BT - Proceedings of the 18th 2008 International Offshore and Polar Engineering Conference, ISOPE 2008

PB - International Society of Offshore and Polar Engineers

T2 - 18th 2008 International Offshore and Polar Engineering Conference, ISOPE 2008

Y2 - 6 July 2008 through 11 July 2008

ER -