摘要
The finite difference time domain simulation shows the existence of an asymmetric quadrupole of Fano resonance on the surface of a gold-silica core-shell (Au@silica) nanoparticle (NP) as being incorporated into the metal oxide nanoarchitecture/P3HT hybrid. Compared to the metal oxide nanoarchitecture/P3HT hybrid solar cell, a 30% enrichment of the short-circuit current density (Jsc) is attained in the P3HT-based nanoarchitectural Fano solar cell with the Au@silica NPs. The enhancement of charge separation in the cell by the electric field of the Fano resonance is directly evidenced by time-resolved photoluminescence measurements. The increase of the degree of P3HT order in the hybrid by the incorporation of Au@silica NPs into the hybrid active layer may also contribute to the enhancement in the Jsc. Charge carrier dynamic measurements show that an electron collection efficiency of ∼97% can be maintained in the P3HT-based nanoarchitectural Fano solar cell. Significant improvement of the efficiency of the inverted metal oxide/P3HT hybrid solar cell is therefore achieved.
原文 | English |
---|---|
頁(從 - 到) | 17993-18000 |
頁數 | 8 |
期刊 | ACS Applied Materials and Interfaces |
卷 | 6 |
發行號 | 20 |
DOIs | |
出版狀態 | Published - 2014 10月 22 |
All Science Journal Classification (ASJC) codes
- 一般材料科學