摘要
The study was to develop paclitaxel-loaded formulations using a novel type of self-assembled nanoparticles that was composed of block copolymers synthesized from poly(γ-glutamic acid) and poly(lactide) via a simple coupling reaction. The nanoparticles (the NPs) were prepared with various feed weight ratios of paclitaxel to block copolymer (the P/BC ratio). The morphology of all prepared nanoparticles was spherical and the surfaces were smooth. Increasing the P/BC ratio significantly increased the drug loading content of the prepared nanoparticles, but remarkably reduced the drug loading efficiency. The release rate of paclitaxel from the NPs decreased significantly as the P/BC ratio increased. For the potential of targeting liver cancer cells, galactosamine was further conjugated on the prepared nanoparticles (the Gal-NPs) as a targeting moiety. It was found that the activity in inhibiting the growth of HepG2 cells (a liver cancer cell line) by the Gal-NPs was comparable to that of a clinically available paclitaxel formulation, while the NPs displayed a significantly less activity. This may be attributed to the fact that the Gal-NPs had a specific interaction with HepG2 cells via ligand-receptor recognition. Cells treated with distinct paclitaxel formulations resulted in arrest in the G2/M phase. The arrest of cells in the G2/M phase was highly suggestive of interference by paclitaxel with spindle formation and was consistent with the morphological findings presented herein. In conclusion, the active targeting nature of the Gal-NPs prepared in the study may be used as a potential drug delivery system for the targeted delivery to liver cancers.
原文 | English |
---|---|
頁(從 - 到) | 291-299 |
頁數 | 9 |
期刊 | Bioconjugate Chemistry |
卷 | 17 |
發行號 | 2 |
DOIs | |
出版狀態 | Published - 2006 |
All Science Journal Classification (ASJC) codes
- 生物技術
- 生物工程
- 生物醫學工程
- 藥理
- 藥學科學
- 有機化學