Pancyclicity on Möbius cubes with edge faults

Sun Yuan Hsieh, Chun Hua Chen

研究成果: Paper

摘要

A graph G = (V, E) is said to be pancyclic if it contains cycles of all lengths from 4 to |V| in G. Let Fe be the set of faulty edges. In this paper, we show that an31y n-dimensional Möbius cube, n ≥ 1, contains a fault-free Hamiltonian path when |Fe| ≤ n - 1. We also show that an n-dimensional Mobius cube, n ≥ 2, is pancyclic when |F e| ≤ n -2. Since an n-dimensional Möbius cube is regular of degree n, both results are optimal in the worst case.

原文English
頁面168-173
頁數6
出版狀態Published - 2004 八月 16
事件Proceedings on the International Symposium on Parallel Architectures, Algorithms and Networks, I-SPAN - Hong Kong, China
持續時間: 2004 五月 102004 五月 12

Other

OtherProceedings on the International Symposium on Parallel Architectures, Algorithms and Networks, I-SPAN
國家China
城市Hong Kong
期間04-05-1004-05-12

    指紋

All Science Journal Classification (ASJC) codes

  • Computer Science(all)

引用此

Hsieh, S. Y., & Chen, C. H. (2004). Pancyclicity on Möbius cubes with edge faults. 168-173. 論文發表於 Proceedings on the International Symposium on Parallel Architectures, Algorithms and Networks, I-SPAN, Hong Kong, China.