Parallel analysis of offshore wind turbine structures under ultimate loads

Shen Haw Ju, Yu Cheng Huang, Hsin Hsiang Hsu

研究成果: Article同行評審

摘要

This paper investigates efficient design of offshore wind turbine (OWT) support structures under ultimate loads and proposes three schemes to overcome excessive computer time due to many required external loads. The first is the assumption of a rigid support structure to find blade wind forces, so that these forces are only dependent on wind profiles, which limits different cases in the structural analyses. Since the blade information is often confidential in turbine companies, this two-stage analysis allows the hub force to be the input data for the support structure design. The second is using a few control loads to perform the steel design between the second and the second-last design cycles. The third is using parallel computational procedures, since all loading cases can be independently executed in different CPU cores and computers. The test cases, with 5044 loading cases, indicate that the proposed method is fully parallel and can complete the design procedures using a few personal computers within several days. Test cases include IEC 61400-3, tropical cyclone, and seismic loads; although there are many loads to be considered, steel design is governed by a limited number of load cases, which are discussed in this paper.

原文English
文章編號4708
期刊Applied Sciences (Switzerland)
9
發行號21
DOIs
出版狀態Published - 2019 十一月 1

All Science Journal Classification (ASJC) codes

  • 材料科學(全部)
  • 儀器
  • 工程 (全部)
  • 製程化學與技術
  • 電腦科學應用
  • 流體流動和轉移過程

指紋

深入研究「Parallel analysis of offshore wind turbine structures under ultimate loads」主題。共同形成了獨特的指紋。

引用此