Performance analysis of joint-sparse recovery from multiple measurement vectors with prior information via convex optimization

Shih Wei Hu, Gang Xuan Lin, Sung Hsien Hsieh, Wei Jie Liang, Chun Shien Lu

研究成果: Conference contribution

3 引文 斯高帕斯(Scopus)

摘要

We address the problem of compressed sensing with multiple measurement vectors associated with prior information in order to better reconstruct an original sparse signal. This problem is modeled via convex optimization with 2, 1 - 2,1 minimization. We establish bounds on the number of measurements required for successful recovery. Our bounds and geometrical interpretations reveal that if the prior information can decrease the statistical dimension and make it lower than that under the case without prior information, 2, 1 - 2, 1 minimization improves the recovery performance dramatically. All our findings are further verified via simulations.

原文English
主出版物標題2016 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Proceedings
發行者Institute of Electrical and Electronics Engineers Inc.
頁面4368-4372
頁數5
ISBN(電子)9781479999880
DOIs
出版狀態Published - 2016 5月 18
事件41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Shanghai, China
持續時間: 2016 3月 202016 3月 25

出版系列

名字ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2016-May
ISSN(列印)1520-6149

Conference

Conference41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016
國家/地區China
城市Shanghai
期間16-03-2016-03-25

All Science Journal Classification (ASJC) codes

  • 軟體
  • 訊號處理
  • 電氣與電子工程

指紋

深入研究「Performance analysis of joint-sparse recovery from multiple measurement vectors with prior information via convex optimization」主題。共同形成了獨特的指紋。

引用此