Photocatalytic H2O-to-H2O2 synchronized oxidation of an organic pollutant by carbon dot/g-C3N4 composites

Je Wei Hsu, Ling Wei Wei, Chiaying Chen, H. Paul Wang

研究成果: Article同行評審

7 引文 斯高帕斯(Scopus)

摘要

Photocatalytic oxidation of organic pollutants using the solar energy is environmentally and economically attractive for developing an energy sustainable organic wastewater treatment process. Here, we employed the impregnation-thermal method to prepare novel carbon dot (CD) dispersed graphitic carbon nitride (g-C3N4) (GCN)/pyromellitic dianhydride (PDI) (CD/GCN/PDI) composites for photocatalytic H2O-to-H2O2 and on-site oxidation of organic pollutants in contaminated or waste water. After a 5-h visible-light irradiation, 252 μM of H2O2 can be yielded by the CD/GCN/PDI composites. The CD, serving as an electron reservoir, dispersed on the GCN/PDI composite (i.e., CD0.003/GCN/PDI) facilitates the separation of photo-excited electrons to promote the two-electron reduction O2-to-H2O2 (O2→˙O2→H2O2). Most importantly, it also on-site activates H2O2 to form ·OH radicals (H2O2→·OH) to enhance oxidation of organic pollutants (e.g., methylene blue and bisphenol A). The ·OH, ∙O2, and photogenerated h+ account for 4–5%, 14–18%, and 20–25% oxidation of organic pollutants under visible-light irradiation for 3 h, respectively. The CD0.003/GCN/PDI composite was also tested for photocatalytic oxidation of the organic pollutant under visible-light irradiation for at least 12 h to demonstrate its photostability and reusability. This visible-light photocatalytic H2O-to-H2O2 for the enhanced oxidation of organic pollutants by the low-cost and metal-free CD/GCN/PDI composites using solar energy was developed to demonstrate the feasibility of an energy self-sufficient organic wastewater treatment process.

原文English
文章編號134918
期刊Journal of Cleaner Production
380
DOIs
出版狀態Published - 2022 12月 20

All Science Journal Classification (ASJC) codes

  • 可再生能源、永續發展與環境
  • 建築與營造
  • 一般環境科學
  • 策略與管理
  • 工業與製造工程

指紋

深入研究「Photocatalytic H2O-to-H2O2 synchronized oxidation of an organic pollutant by carbon dot/g-C3N4 composites」主題。共同形成了獨特的指紋。

引用此