Pore volume upgrade of biochar from spent coffee grounds by sodium bicarbonate during torrefaction

Wei Hsin Chen, Jyun Ting Du, Kuan Ting Lee, Hwai Chyuan Ong, Young Kwon Park, Chien Chang Huang

研究成果: Article同行評審

7 引文 斯高帕斯(Scopus)

摘要

A novel approach for upgrading the pore volume of biochar at low temperatures using a green additive of sodium bicarbonate (NaHCO3) is developed in this study. The biochar was produced from spent coffee grounds (SCGs) torrefied at different temperatures (200–300 °C) with different residence times (30–60 min) and NaHCO3 concentrations (0–8.3 wt%). The results reveal that the total pore volume of biochar increases with rising temperature, residence time, or NaHCO3 aqueous solution concentration, whereas the bulk density has an opposite trend. The specific surface area and total pore volume of pore-forming SCG from 300 °C torrefaction for 60 min with an 8.3 wt% NaHCO3 solution (300-TP-SCG) are 42.050 m2 g−1 and 0.1389 cm3·g−1, accounting for the improvements of 141% and 76%, respectively, compared to the parent SCG. The contact angle (126°) and water activity (0.48 aw) of 300-TP-SCG reveal that it has long storage time. The CO2 uptake capacity of 300-TP-SCG is 0.32 mmol g−1, rendering a 39% improvement relative to 300-TSCG, namely, SCG torrefied at 300 °C for 60 min. 300-TP-SCG has higher HHV (28.31 MJ·kg−1) and lower ignition temperature (252 °C). Overall, it indicates 300-TP-SCG is a potential fuel substitute for coal. This study has successfully produced mesoporous biochar at low temperatures to fulfill “3E”, namely, energy (biofuel), environment (biowaste reuse solid waste), and circular economy (bioadsorbent).

原文English
文章編號129999
期刊Chemosphere
275
DOIs
出版狀態Published - 2021 7月

All Science Journal Classification (ASJC) codes

  • 環境工程
  • 化學 (全部)
  • 環境化學
  • 污染
  • 公共衛生、環境和職業健康
  • 健康、毒理學和誘變

指紋

深入研究「Pore volume upgrade of biochar from spent coffee grounds by sodium bicarbonate during torrefaction」主題。共同形成了獨特的指紋。

引用此