Predicting new adopters via socially-aware neural graph collaborative filtering

Yu Che Tsai, Muzhi Guan, Cheng Te Li, Meeyoung Cha, Yong Li, Yue Wang

研究成果: Conference contribution

1 引文 斯高帕斯(Scopus)

摘要

We predict new adopters of specific items by proposing S-NGCF, a socially-aware neural graph collaborative filtering model. This model uses information about social influence and item adoptions; then it learns the representation of user-item relationships via a graph convolutional network. Experiments show that social influence is essential for adopter prediction. S-NGCF outperforms the prediction of new adopters compared to state-of-the-art methods by 18%.

原文English
主出版物標題Computational Data and Social Networks - 8th International Conference, CSoNet 2019, Proceedings
編輯Andrea Tagarelli, Hanghang Tong
發行者Springer
頁面155-162
頁數8
ISBN(列印)9783030349790
DOIs
出版狀態Published - 2019
事件8th International Conference on Computational Data and Social Networks, CSoNet 2019 - Ho Chi Minh City, Viet Nam
持續時間: 2019 十一月 182019 十一月 20

出版系列

名字Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
11917 LNCS
ISSN(列印)0302-9743
ISSN(電子)1611-3349

Conference

Conference8th International Conference on Computational Data and Social Networks, CSoNet 2019
國家/地區Viet Nam
城市Ho Chi Minh City
期間19-11-1819-11-20

All Science Journal Classification (ASJC) codes

  • 理論電腦科學
  • 電腦科學(全部)

指紋

深入研究「Predicting new adopters via socially-aware neural graph collaborative filtering」主題。共同形成了獨特的指紋。

引用此