Preparation of 2D leaf-shaped and 3D flower-shaped sandwich-like polyaniline nanocomposites and application on anticorrosion

Yuan Teng Kang, Cheng Chien Wang, Chuh Yung Chen

研究成果: Article同行評審

4 引文 斯高帕斯(Scopus)

摘要

The synthesis of triple-layer-structured polyaniline (PANI) conductive nanocomposites, including two-dimensional leaf-shaped and three-dimensional flower-shaped types (S-PANI), via a two-step method is proposed in this study. According to scanning electron microscopic measurement, the triple-layer-structured S-PANI consists of a middle layer of nonconductive PANI (N-PANI) at 100 nm thickness and emeraldine-salt-form PANI (ES-PANI) nanolayer at 40–50 nm thickness. The results of Fourier-transform infrared spectroscopy, UV/Vis spectroscopy, and X-ray diffraction pattern demonstrate that the phenazine unit existed within the N-PANI main chain, leading to the poor conductivity of N-PANI. However, the conductivity of the N-PANI can be extremely enhanced by at least nine orders of magnitudes (<10−9–100 S/cm) when a conductive ES-PANI nanolayer is further grown on the N-PANI outer surface. Finally, the results of oxygen transmission test and electrochemical impedance spectroscopy reveal that the leaf-shaped S-PANI, as an additive in epoxy resin, has the best oxygen barrier property (oxygen transmission rate = 5.86 cm3 m−2 day−1) and highest coating resistance (5.53 × 1010 Ω) after 60-day immersion in 0.1 M HCl solution, indicating that the leaf-shaped S-PANI is an excellent anticorrosion additive.

原文English
文章編號49729
期刊Journal of Applied Polymer Science
138
發行號4
DOIs
出版狀態Published - 2021 一月 20

All Science Journal Classification (ASJC) codes

  • 化學 (全部)
  • 表面、塗料和薄膜
  • 聚合物和塑料
  • 材料化學

指紋

深入研究「Preparation of 2D leaf-shaped and 3D flower-shaped sandwich-like polyaniline nanocomposites and application on anticorrosion」主題。共同形成了獨特的指紋。

引用此