PSEISMIC: A personalized self-exciting point process model for predicting tweet popularity

Hsin Yu Chen, Cheng Te Li

研究成果: Conference contribution

5 引文 斯高帕斯(Scopus)

摘要

Social networking websites allow users to create and share a variety of items. Big information cascades of post resharing can be generated because users of these sites reshare each other's posts with their friends and followers. In this work, we aim at predicting the final number of reshares for any given post. We build on the theory of self-exciting point processes to develop a statistical model, PSEISMIC, which leads to accurate predictions of popularity. Moreover, we perform cluster analysis to group all tweets so that the coefficient of memory kernel in PSEISMIC can be estimated for every cluster, rather than using the same memory kernel. Experiments conducted on a large-scale retweet dataset show that the proposed PSEISMIC model outperforms the state-of-the-art approach, SEISMIC in predicting the popularity of a given post.

原文English
主出版物標題Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017
編輯Jian-Yun Nie, Zoran Obradovic, Toyotaro Suzumura, Rumi Ghosh, Raghunath Nambiar, Chonggang Wang, Hui Zang, Ricardo Baeza-Yates, Ricardo Baeza-Yates, Xiaohua Hu, Jeremy Kepner, Alfredo Cuzzocrea, Jian Tang, Masashi Toyoda
發行者Institute of Electrical and Electronics Engineers Inc.
頁面2710-2713
頁數4
ISBN(電子)9781538627143
DOIs
出版狀態Published - 2017 7月 1
事件5th IEEE International Conference on Big Data, Big Data 2017 - Boston, United States
持續時間: 2017 12月 112017 12月 14

出版系列

名字Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017
2018-January

Other

Other5th IEEE International Conference on Big Data, Big Data 2017
國家/地區United States
城市Boston
期間17-12-1117-12-14

All Science Journal Classification (ASJC) codes

  • 電腦網路與通信
  • 硬體和架構
  • 資訊系統
  • 資訊系統與管理
  • 控制和優化

指紋

深入研究「PSEISMIC: A personalized self-exciting point process model for predicting tweet popularity」主題。共同形成了獨特的指紋。

引用此