摘要
This paper proposes a lens design method for effectively collimating the light emitting from a light-emitting diode (LED). This collimating lens contains two aspherical lens surfaces which can be mathematically characterized using a few designing parameters, and hence is called an analytic collimating lens. An optical ray-tracing algorithm has been developed for these analytic collimating lenses to analyze their optical performance and to optimize their designs. Six high-power and commercially available ultraviolet (UV) LEDs are chosen as examples for demonstrating the optimal collimating lens design. For each UV-LED, the corresponding optical collimating lens is determined by inputting the ray data file provided by the manufacture over a finite-size emitting area. The divergent angles of the six UV-LEDs have been successfully collimated to a narrow range in between 1.56° to 2.84° from their original radiation angle around 46° to 120°. Furthermore, the proposed analytical collimating lenses are suitable for mass-production using standard mold injection methods, and hence possess great potentials for industry applications of LEDs.
原文 | English |
---|---|
文章編號 | 911 |
期刊 | Applied Sciences (Switzerland) |
卷 | 12 |
發行號 | 2 |
DOIs | |
出版狀態 | Published - 2022 1月 1 |
All Science Journal Classification (ASJC) codes
- 一般材料科學
- 儀器
- 一般工程
- 製程化學與技術
- 電腦科學應用
- 流體流動和轉移過程