TY - JOUR
T1 - Radiation sensitization of tumor cells induced by shear stress
T2 - The roles of integrins and FAK
AU - Luo, Chi Wen
AU - Wu, Chia Ching
AU - Ch'ang, Hui Ju
N1 - Funding Information:
This study was supported by grant CA-100-PP-12 from the National Health Research Institutes, Taiwan .
PY - 2014/9
Y1 - 2014/9
N2 - Recent studies revealed that the interstitial fluid flow in and around tumor tissue not only played an important role in delivering anticancer agents, but also affected the microenvironment, mostly hypoxia, in modulating tumor radio-sensitivity. The current study investigated the hypoxia-independent mechanisms of flow-induced shear stress in sensitizing tumors to radiation.Colon cancer cells were seeded onto glass slides pre-coated with fibronectin. A parallel-plate flow chamber system was used to impose fluid shear stress. Cell proliferation, apoptosis and colony assays were measured after shear stress and/or radiation. Cell cycle analysis and immunoblots of cell adhesion signal molecules were evaluated. The effect of shear stress was reversed by modulating integrin β1 or FAK.Shear stress of 12dyne/cm2 for 24h, but not 3h, enhanced the radiation induced cytotoxicity to colon cancer cells. Protein expression of FAK was significantly down-regulated but not transcriptionally suppressed. By modulating integrin β1 and FAK expression, we demonstrated that shear stress enhanced tumor radiosensitivity by regulating integrin β1/FAK/Akt as well as integrin β1/FAK/cortactin pathways. Shear stress in combination with radiation might regulate integrins signaling by recruiting and activating caspases 3/8 for FAK cleavage followed by ubiquitin-mediated proteasomal degradation.Shear stress enhanced the radiation toxicity to colon cancer cells through suppression of integrin signaling and protein degradation of FAK. The results of our study provide a strong rationale for cancer treatment that combines between radiation and strategy in modulating tumor interstitial fluid flow.
AB - Recent studies revealed that the interstitial fluid flow in and around tumor tissue not only played an important role in delivering anticancer agents, but also affected the microenvironment, mostly hypoxia, in modulating tumor radio-sensitivity. The current study investigated the hypoxia-independent mechanisms of flow-induced shear stress in sensitizing tumors to radiation.Colon cancer cells were seeded onto glass slides pre-coated with fibronectin. A parallel-plate flow chamber system was used to impose fluid shear stress. Cell proliferation, apoptosis and colony assays were measured after shear stress and/or radiation. Cell cycle analysis and immunoblots of cell adhesion signal molecules were evaluated. The effect of shear stress was reversed by modulating integrin β1 or FAK.Shear stress of 12dyne/cm2 for 24h, but not 3h, enhanced the radiation induced cytotoxicity to colon cancer cells. Protein expression of FAK was significantly down-regulated but not transcriptionally suppressed. By modulating integrin β1 and FAK expression, we demonstrated that shear stress enhanced tumor radiosensitivity by regulating integrin β1/FAK/Akt as well as integrin β1/FAK/cortactin pathways. Shear stress in combination with radiation might regulate integrins signaling by recruiting and activating caspases 3/8 for FAK cleavage followed by ubiquitin-mediated proteasomal degradation.Shear stress enhanced the radiation toxicity to colon cancer cells through suppression of integrin signaling and protein degradation of FAK. The results of our study provide a strong rationale for cancer treatment that combines between radiation and strategy in modulating tumor interstitial fluid flow.
UR - http://www.scopus.com/inward/record.url?scp=84903521172&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84903521172&partnerID=8YFLogxK
U2 - 10.1016/j.bbamcr.2014.06.007
DO - 10.1016/j.bbamcr.2014.06.007
M3 - Article
C2 - 24946134
AN - SCOPUS:84903521172
SN - 0167-4889
VL - 1843
SP - 2129
EP - 2137
JO - Biochimica et Biophysica Acta - Molecular Cell Research
JF - Biochimica et Biophysica Acta - Molecular Cell Research
IS - 9
ER -