TY - JOUR
T1 - Radical 3-subgroups of the finite groups of Lie type E6
AU - An, Jianbei
AU - Dietrich, Heiko
AU - Huang, Shih Chang
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/12
Y1 - 2018/12
N2 - We consider the universal version of the finite exceptional group of Lie type G=E6 ε(q) with 3|q−ε, where E6 +1(q)=E6(q) and E6 −1(q)=2E6(q). We classify, up to conjugacy, the radical 3-subgroups of G. As an application, the essential 3-rank of the Frobenius category FD(G) is determined, where D is a Sylow 3-subgroup of G.
AB - We consider the universal version of the finite exceptional group of Lie type G=E6 ε(q) with 3|q−ε, where E6 +1(q)=E6(q) and E6 −1(q)=2E6(q). We classify, up to conjugacy, the radical 3-subgroups of G. As an application, the essential 3-rank of the Frobenius category FD(G) is determined, where D is a Sylow 3-subgroup of G.
UR - http://www.scopus.com/inward/record.url?scp=85042885243&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85042885243&partnerID=8YFLogxK
U2 - 10.1016/j.jpaa.2018.02.019
DO - 10.1016/j.jpaa.2018.02.019
M3 - Article
AN - SCOPUS:85042885243
SN - 0022-4049
VL - 222
SP - 4040
EP - 4067
JO - Journal of Pure and Applied Algebra
JF - Journal of Pure and Applied Algebra
IS - 12
ER -