Radical subgroups of the finite exceptional groups of Lie type E6

Jianbei An, Heiko Dietrich, Shih Chang Huang

研究成果: Article同行評審

3 引文 斯高帕斯(Scopus)

摘要

We consider the finite exceptional groups of Lie type E6+1(q)=E6(q) and E6-1(q)=E62(q), both the universal versions. We classify, up to conjugacy, the maximal p-local subgroups and radical p-subgroups of G=E6ε(q) for p ≥ 5 with p = q and q ε mod p, and for p = 3 with 3 q and q - ε mod 3. As an application, the essential p-rank of the Frobenius category FD(G) is determined, where D is a Sylow p-subgroup of G. Moreover, if p = 3, then we show that there is a subgroup H = F4(q) of G containing D such that FD(G)=FD(H), that is, H controls 3-fusion in G.

原文English
頁(從 - 到)387-429
頁數43
期刊Journal of Algebra
409
DOIs
出版狀態Published - 2014 七月 1

All Science Journal Classification (ASJC) codes

  • Algebra and Number Theory

指紋 深入研究「Radical subgroups of the finite exceptional groups of Lie type <sub>E6</sub>」主題。共同形成了獨特的指紋。

引用此