TY - JOUR
T1 - Rapid image completion system using multiresolution patch-based directional and nondirectional approaches
AU - Fang, Chih Wei
AU - Lien, Jenn Jier James
PY - 2009/12
Y1 - 2009/12
N2 - This study presents a rapid image completion system comprising a training (or analysis) process and an image completion (or synthesis) process. The proposed system adopts a multiresolution approach, which not only improves the convergence rate of the synthesis process, but also provides the ability to deal with large replaced regions. In the training process, a down-sampling approach is applied to create a patch-based texture eigenspace based on multiresolution background region information. In the image completion process, an up-sampling approach is applied to synthesize the replaced foreground regions. To ensure the continuity of the geometric texture structure between the original background scene regions and the replaced foreground regions, directional and nondirectional image completion approaches are developed to reconstruct the global geometric structure and to enhance the local detailed features of the replaced foreground regions in the lower and higher resolution level images, respectively. Moreover, the synthesis priority order of the individual patches and the appropriate choice of completion scheme (i.e., directional or nondirectional) are both determined in accordance with a Hessian matrix decision value (HMDV) parameter. Finally, a texture refinement process is performed to optimize the resolution of the synthesized result.
AB - This study presents a rapid image completion system comprising a training (or analysis) process and an image completion (or synthesis) process. The proposed system adopts a multiresolution approach, which not only improves the convergence rate of the synthesis process, but also provides the ability to deal with large replaced regions. In the training process, a down-sampling approach is applied to create a patch-based texture eigenspace based on multiresolution background region information. In the image completion process, an up-sampling approach is applied to synthesize the replaced foreground regions. To ensure the continuity of the geometric texture structure between the original background scene regions and the replaced foreground regions, directional and nondirectional image completion approaches are developed to reconstruct the global geometric structure and to enhance the local detailed features of the replaced foreground regions in the lower and higher resolution level images, respectively. Moreover, the synthesis priority order of the individual patches and the appropriate choice of completion scheme (i.e., directional or nondirectional) are both determined in accordance with a Hessian matrix decision value (HMDV) parameter. Finally, a texture refinement process is performed to optimize the resolution of the synthesized result.
UR - http://www.scopus.com/inward/record.url?scp=77958026935&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77958026935&partnerID=8YFLogxK
U2 - 10.1109/TIP.2009.2027635
DO - 10.1109/TIP.2009.2027635
M3 - Article
C2 - 19605324
AN - SCOPUS:77958026935
VL - 18
SP - 2769
EP - 2779
JO - IEEE Transactions on Image Processing
JF - IEEE Transactions on Image Processing
SN - 1057-7149
IS - 12
ER -