Reductive Heating Experiments on BOF-Slag: Simultaneous Phosphorus Re-Distribution and Volume Stabilization for Recycling

Tung Hsin Su, Huai Jen Yang, Yu Chen Lee, Yen Hong Shau, Eiichi Takazawa, Ming Fong Lin, Jin Luh Mou, Wei Teh Jiang

研究成果: Article同行評審

4 引文 斯高帕斯(Scopus)

摘要

Basic-oxygen furnace (BOF) slag is the second abundant by-product from the steel-making process. It is not readily recycled for high phosphorus content and volume instability. To eliminate its phosphorus-hosting dicalcium silicate (C2S) and volumetrically unstable free-lime, reductive heating experiments on BOF-slag are carried out at 1300–1600 °C using quartz-sand or serpentine as a basicity modifier. In the products, C2S and free-lime are consumed through reacting with CaO and MgO, which are produced by Ca-ferrite and Mg-wustite reduction, respectively, to form merwinite and akermanite. The products are also characterized by silicate–metal segregation and the extent of that increases with increasing temperature and decreasing particle size of starting mixtures. Thermodynamic calculations show that phosphorus in C2S is mostly converted to Fe2P in the metal domain. Compared to the slag–serpentine experiments, the slag–quartz experiments resulted in higher extents of silicate–metal segregation with lower phosphorus contents of ≈0.1% in the silicate domain, which therefore is recyclable. To optimize silicate–metal segregation for recycling BOF-slag, it is suggested (i) bringing the BOF-slag composition within the low-temperature side of the C2S–merwinite–akermanite Alkemade triangle by adding quartz-sand; (ii) reductively heating to 1500–1600 °C; and (iii) cooling slowly then quenching to suppress C2S crystallization from melts.

原文English
頁(從 - 到)1511-1526
頁數16
期刊Steel Research International
87
發行號11
DOIs
出版狀態Published - 2016 11月 1

All Science Journal Classification (ASJC) codes

  • 凝聚態物理學
  • 物理與理論化學
  • 金屬和合金
  • 材料化學

指紋

深入研究「Reductive Heating Experiments on BOF-Slag: Simultaneous Phosphorus Re-Distribution and Volume Stabilization for Recycling」主題。共同形成了獨特的指紋。

引用此