Robust observer-based optimal linear quadratic tracker for five-degree-of-freedom sampled-data active magnetic bearing system

Jason Sheng Hong Tsai, Te Jen Su, Jui Chuan Cheng, Yun You Lin, Van Nam Giap, Shu Mei Guo, Leang San Shieh

研究成果: Article同行評審

9 引文 斯高帕斯(Scopus)

摘要

This paper presents three observer/Kalman filter identification (OKID) approaches and develops a robust observer-based optimal linear quadratic digital tracker (LQDT) for the five-degree-of-freedom (five-DOF) sampled-data active magnetic bearing (AMB) system with various disturbances. The more detailed objectives are: (i) to construct both an equivalent linear time-invariant discrete-time model and its state estimator via the proposed OKID approaches for the AMB system, which might be an unknown nonlinear time-varying unstable system with both a specified rotation speed and a sampling rate; (ii) to provide an adaptive disturbance estimation scheme, which establishes an equivalent input disturbance (EID) estimator for the AMB system with unexpected disturbances; and (iii) to develop a robust observer-based optimal LQDT for the sampled-data AMB system with both a pre-specified time-varying speed and unexpected disturbances. The developed LQDT is able to recover the displacement of the rotor to the pre-specified trajectory position whenever it deviates from such trajectory.

原文English
頁(從 - 到)1273-1299
頁數27
期刊International Journal of Systems Science
49
發行號6
DOIs
出版狀態Published - 2018 四月 26

All Science Journal Classification (ASJC) codes

  • 控制與系統工程
  • 理論電腦科學
  • 電腦科學應用

指紋

深入研究「Robust observer-based optimal linear quadratic tracker for five-degree-of-freedom sampled-data active magnetic bearing system」主題。共同形成了獨特的指紋。

引用此