Robust skew-t factor analysis models for handling missing data

Wan Lun Wang, Min Liu, Tsung I. Lin

研究成果: Article同行評審

10 引文 斯高帕斯(Scopus)

摘要

This paper presents a novel framework for maximum likelihood (ML) estimation in skew-t factor analysis (STFA) models in the presence of missing values or nonresponses. As a robust extension of the ordinary factor analysis model, the STFA model assumes a restricted version of the multivariate skew-t distribution for the latent factors and the unobservable errors to accommodate non-normal features such as asymmetry and heavy tails or outliers. An EM-type algorithm is developed to carry out ML estimation and imputation of missing values under a missing at random mechanism. The practical utility of the proposed methodology is illustrated through real and synthetic data examples.

原文English
頁(從 - 到)649-672
頁數24
期刊Statistical Methods and Applications
26
發行號4
DOIs
出版狀態Published - 2017 11月 1

All Science Journal Classification (ASJC) codes

  • 統計與概率
  • 統計、概率和不確定性

指紋

深入研究「Robust skew-t factor analysis models for handling missing data」主題。共同形成了獨特的指紋。

引用此