TY - JOUR
T1 - RockNet
T2 - Rockfall and Earthquake Detection and Association via Multitask Learning and Transfer Learning
AU - Liao, Wu Yu
AU - Lee, En Jui
AU - Wang, Chung Ching
AU - Chen, Po
AU - Provost, Floriane
AU - Hibert, Clement
AU - Malet, Jean Philippe
AU - Chu, Chung Ray
AU - Lin, Guan Wei
N1 - Publisher Copyright:
© 1980-2012 IEEE.
PY - 2023
Y1 - 2023
N2 - Seismological data plays a crucial role in timely slope failure hazard assessments. However, identifying rockfall waveforms from seismic data poses challenges due to their high variability across different events and stations. To address this, we propose RockNet, a deep-learning-based multitask model capable of detecting both rockfall and earthquake events at both the single-station and local seismic network levels. RockNet consists of two submodels: the single-station model, which computes waveform masks for earthquake and rockfall signals and performs earthquake P and S phase picking simultaneously on single-station seismograms, and the association model, which determines the occurrences of local seismic events by aggregating hidden feature maps from the trained single-station model across all stations. Since the rockfall data is relatively scarce and may not be sufficient to train a deep-learning model effectively, we augment the dataset with abundant nonrockfall data and add additional tasks to promote shared interpretability and robustness. RockNet is trained and tested on a local dataset collected from the Luhu tribe in Miaoli, Taiwan, achieving macro F1-scores of 0.983 and 0.990 for the single-station model and the association model, respectively. Furthermore, we evaluate RockNet on an independent dataset collected from the Super-Sauze unstable slope region in France, and it demonstrates good generalization performance in discriminating earthquake, rockfall, and noise with a macro F1-score of 0.927. This study highlights the potential of deep learning in leveraging diverse types of inputs for seismic signal detection even with limited training data.
AB - Seismological data plays a crucial role in timely slope failure hazard assessments. However, identifying rockfall waveforms from seismic data poses challenges due to their high variability across different events and stations. To address this, we propose RockNet, a deep-learning-based multitask model capable of detecting both rockfall and earthquake events at both the single-station and local seismic network levels. RockNet consists of two submodels: the single-station model, which computes waveform masks for earthquake and rockfall signals and performs earthquake P and S phase picking simultaneously on single-station seismograms, and the association model, which determines the occurrences of local seismic events by aggregating hidden feature maps from the trained single-station model across all stations. Since the rockfall data is relatively scarce and may not be sufficient to train a deep-learning model effectively, we augment the dataset with abundant nonrockfall data and add additional tasks to promote shared interpretability and robustness. RockNet is trained and tested on a local dataset collected from the Luhu tribe in Miaoli, Taiwan, achieving macro F1-scores of 0.983 and 0.990 for the single-station model and the association model, respectively. Furthermore, we evaluate RockNet on an independent dataset collected from the Super-Sauze unstable slope region in France, and it demonstrates good generalization performance in discriminating earthquake, rockfall, and noise with a macro F1-score of 0.927. This study highlights the potential of deep learning in leveraging diverse types of inputs for seismic signal detection even with limited training data.
UR - http://www.scopus.com/inward/record.url?scp=85162712331&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85162712331&partnerID=8YFLogxK
U2 - 10.1109/TGRS.2023.3284008
DO - 10.1109/TGRS.2023.3284008
M3 - Article
AN - SCOPUS:85162712331
SN - 0196-2892
VL - 61
JO - IEEE Transactions on Geoscience and Remote Sensing
JF - IEEE Transactions on Geoscience and Remote Sensing
M1 - 5911612
ER -