Semi-transparent reduced graphene oxide photodetectors for ultra-low power operation

Wei Chen Tu, Yi Hsiang Shih, Jing Hong Huang, Yu Cheng Chen

研究成果: Article同行評審

3 引文 斯高帕斯(Scopus)


The emerged demand for high-performance systems promotes the development of two-dimensional (2D) graphene-based photodetectors. However, these graphene-based photodetectors are usually fabricated by an expensive photolithography and complicated transferred process. Here, a semi-transparent reduced graphene oxide (rGO) photodetector on a polyethylene terephthalate (PET) substrate with ultra-low power operation by simple processes is developed. The photodetector has achieved a transmittance about 60%, a superior responsivity of 375 mA/W and a high detectivity of 1012 Jones at a bias of -1.5 V. Even the photodetector is worked at zero bias, the photodetector exhibits a superior on/off ratio of 12. Moreover, the photoresponse of such photodetector displays little reduction after hundred times bending, revealing that the photodetector is reliable and robust. The proposed fabrication strategy of the photodetector will be beneficial to the integration of semi-transparent and low-power wearable devices in the future.

頁(從 - 到)14208-14217
期刊Optics Express
出版狀態Published - 2021 五月 10

All Science Journal Classification (ASJC) codes

  • 原子與分子物理與光學


深入研究「Semi-transparent reduced graphene oxide photodetectors for ultra-low power operation」主題。共同形成了獨特的指紋。