TY - JOUR
T1 - Sequences Derived from the Symmetric Powers of {1, 2, …, k}
AU - Huang, Po Yi
AU - Ke, Wen Fong
N1 - Publisher Copyright:
© 2023, University of Waterloo. All rights reserved.
PY - 2023
Y1 - 2023
N2 - For a fixed integer k, we define a sequence Ak = (ak (n))n≥0 and a corresponding sparse subsequence Sk using the cardinality of the n-th symmetric power of the set {1, 2, …, k}. For k ∈ {2, …, 8}, we find recursive formulas for Sk, and show that the values ak (0), ak (1), and ak (3) are sufficient for constructing Ak.
AB - For a fixed integer k, we define a sequence Ak = (ak (n))n≥0 and a corresponding sparse subsequence Sk using the cardinality of the n-th symmetric power of the set {1, 2, …, k}. For k ∈ {2, …, 8}, we find recursive formulas for Sk, and show that the values ak (0), ak (1), and ak (3) are sufficient for constructing Ak.
UR - http://www.scopus.com/inward/record.url?scp=85167355135&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85167355135&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85167355135
SN - 1530-7638
VL - 26
JO - Journal of Integer Sequences
JF - Journal of Integer Sequences
IS - 7
M1 - 23.7.5
ER -