TY - JOUR
T1 - SERS-active substrate with collective amplification design for trace analysis of pesticides
AU - Sitjar, Jaya
AU - Liao, Jiunn Der
AU - Lee, Han
AU - Liu, Bernard Haochih
AU - Fu, Wei En
N1 - Funding Information:
Funding: This work was financially supported by the Headquarters of University Advancement at National Cheng Kung University and the Ministry of Education, Taiwan, under grant number D108-F2302.
Publisher Copyright:
© 2019 by the authors.
PY - 2019/5
Y1 - 2019/5
N2 - Health risks posed by the exposure to trace amounts of pesticide residue in agricultural productshave gaineda lot of concerns, due to theirneurotoxicnature. The applications of surface-enhanced Raman Scattering (SERS) as a detection technique have consistently shown its potential as a rapid and sensitive means with minimal sample preparation. In this study, gold nanoparticles (Au NPs) in elliptical shapes were collected into a layer of ordered zirconia concave pores. The porous zirconia layer (pZrO2) was then deposited with Au NPs, denoted as Au NPs (x)/pZrO2, where x indicates the deposition thickness of Au NPs in nm. In the concave structure of pZrO2, Au-ZrO2 and Au-Au interactions provide a synergistic and physical mechanism of SERS, which is anticipated to collect and amplify SERS signals and thereafter improve the enhancement factor (EF) of Au NPs/pZrO2. By taking Rhodamine 6G (R6G) as the test molecule, EF of Au NPs/pZrO2 might reach to 7.0 × 107. Au NPs (3.0)/pZrO2 was then optimized and competent to detect pesticides, e.g., phosmet and carbaryl at very low concentrations, corresponding to the maximum residue limits of each, i.e., 0.3 ppm and 0.2 ppm, respectively. Au NPs (3.0)/pZrO2 also showed the effectiveness of distinguishing between phosmet and carbaryl under mixed conditions. Due to the strong affinities of the phosphoric groups and sulfur in phosmet to the Au NPs (3.0)/pZrO2, the substrate exhibited selective detection to this particular pesticide. In this study, Au NPs (3.0)/pZrO2 has thus demonstrated trace detection of residual pesticides, due to the substrate design that intended to provide collective amplification of SERS.
AB - Health risks posed by the exposure to trace amounts of pesticide residue in agricultural productshave gaineda lot of concerns, due to theirneurotoxicnature. The applications of surface-enhanced Raman Scattering (SERS) as a detection technique have consistently shown its potential as a rapid and sensitive means with minimal sample preparation. In this study, gold nanoparticles (Au NPs) in elliptical shapes were collected into a layer of ordered zirconia concave pores. The porous zirconia layer (pZrO2) was then deposited with Au NPs, denoted as Au NPs (x)/pZrO2, where x indicates the deposition thickness of Au NPs in nm. In the concave structure of pZrO2, Au-ZrO2 and Au-Au interactions provide a synergistic and physical mechanism of SERS, which is anticipated to collect and amplify SERS signals and thereafter improve the enhancement factor (EF) of Au NPs/pZrO2. By taking Rhodamine 6G (R6G) as the test molecule, EF of Au NPs/pZrO2 might reach to 7.0 × 107. Au NPs (3.0)/pZrO2 was then optimized and competent to detect pesticides, e.g., phosmet and carbaryl at very low concentrations, corresponding to the maximum residue limits of each, i.e., 0.3 ppm and 0.2 ppm, respectively. Au NPs (3.0)/pZrO2 also showed the effectiveness of distinguishing between phosmet and carbaryl under mixed conditions. Due to the strong affinities of the phosphoric groups and sulfur in phosmet to the Au NPs (3.0)/pZrO2, the substrate exhibited selective detection to this particular pesticide. In this study, Au NPs (3.0)/pZrO2 has thus demonstrated trace detection of residual pesticides, due to the substrate design that intended to provide collective amplification of SERS.
UR - http://www.scopus.com/inward/record.url?scp=85066926112&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85066926112&partnerID=8YFLogxK
U2 - 10.3390/nano9050664
DO - 10.3390/nano9050664
M3 - Article
AN - SCOPUS:85066926112
SN - 2079-4991
VL - 9
JO - Nanomaterials
JF - Nanomaterials
IS - 5
M1 - 664
ER -