SFCM: A Fuzzy Clustering Algorithm of Extracting the Shape Information of Data

Quang Thinh Bui, Bay Vo, Vaclav Snasel, Witold Pedrycz, Tzung Pei Hong, Ngoc Thanh Nguyen, Mu Yen Chen

研究成果: Article同行評審

25 引文 斯高帕斯(Scopus)


Topological data analysis is a new theoretical trend using topological techniques to mine data. This approach helps determine topological data structures. It focuses on investigating the global shape of data rather than on local information of high-dimensional data. The Mapper algorithm is considered as a sound representative approach in this area. It is used to cluster and identify concise and meaningful global topological data structures that are out of reach for many other clustering methods. In this article, we propose a new method called the Shape Fuzzy C-Means (SFCM) algorithm, which is constructed based on the Fuzzy C-Means algorithm with particular features of the Mapper algorithm. The SFCM algorithm can not only exhibit the same clustering ability as the Fuzzy C-Means but also reveal some relationships through visualizing the global shape of data supplied by the Mapper. We present a formal proof and include experiments to confirm our claims. The performance of the enhanced algorithm is demonstrated through a comparative analysis involving the original algorithm, Mapper, and the other fuzzy set based improved algorithm, F-Mapper, for synthetic and real-world data. The comparison is conducted with respect to output visualization in the topological sense and clustering stability.

頁(從 - 到)75-89
期刊IEEE Transactions on Fuzzy Systems
出版狀態Published - 2021 1月

All Science Journal Classification (ASJC) codes

  • 控制與系統工程
  • 計算機理論與數學
  • 人工智慧
  • 應用數學


深入研究「SFCM: A Fuzzy Clustering Algorithm of Extracting the Shape Information of Data」主題。共同形成了獨特的指紋。