TY - JOUR
T1 - Short-term temporal metabolic behavior in halophilic cyanobacterium synechococcus sp. Strain PCC 7002 after salt shock
AU - Aikawa, Shimpei
AU - Nishida, Atsumi
AU - Hasunuma, Tomohisa
AU - Chang, Jo Shu
AU - Kondo, Akihiko
N1 - Funding Information:
This research was supported by the Advanced Low Carbon Technology Research and Development Program (ALCA) and Core Research for Evolutional Science and Technology (CREST) of the Promoting Globalization on Strategic Basic Research Programs from the Japan Science and Technology Agency. This research was also partially supported by a National Cheng Kung University project, as part of a second-phase 5-year 50-billion-dollar grant from the Taiwanese government to JSC, JSPS KAKENHI Grant Number JP16K18836 to SA. The authors thank Ms. Chikako Aoki and Ms. Mami Matsuda for their technical assistance. We would like to thank Forte Science Communications (https://www.forte-science.co.jp) for English language editing.
Funding Information:
Funding: This research was supported by the Advanced Low Carbon Technology Research and Development Program (ALCA) and Core Research for Evolutional Science and Technology (CREST) of the Promoting Globalization on Strategic Basic Research Programs from the Japan Science and Technology Agency. This research was also partially supported by a National Cheng Kung University project, as part of a second-phase 5-year 50-billion-dollar grant from the Taiwanese government to JSC, JSPS KAKENHI Grant Number JP16K18836 to SA.
Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/12
Y1 - 2019/12
N2 - In response to salt stress, cyanobacteria increases the gene expression of Na+/H+ antiporter and K+ uptake system proteins and subsequently accumulate compatible solutes. However, alterations in the concentrations of metabolic intermediates functionally related to the early stage of the salt stress response have not been investigated. The halophilic cyanobacterium Synechococcus sp. PCC 7002 was subjected to salt shock with 0.5 and 1 M NaCl, then we performed metabolomics analysis by capillary electrophoresis/mass spectrometry (CE/MS) and gas chromatography/mass spectrometry (GC/MS) after cultivation for 1, 3, 10, and 24 h. Gene expression profiling using a microarray after 1 h of salt shock was also conducted. We observed suppression of the Calvin cycle and activation of glycolysis at both NaCl concentrations. However, there were several differences in the metabolic changes after salt shock following exposure to 0.5 M and 1 M NaCl: (i): the main compatible solute, glucosylglycerol, accumulated quickly at 0.5 M NaCl after 1 h but increased gradually for 10 h at 1 M NaCl; (ii) the oxidative pentose phosphate pathway and the tricarboxylic acid cycle were activated at 0.5 M NaCl; and (iii) the multi-functional compound spermidine greatly accumulated at 1 M NaCl. Our results show that Synechococcus sp. PCC 7002 acclimated to different levels of salt through a salt stress response involving the activation of different metabolic pathways.
AB - In response to salt stress, cyanobacteria increases the gene expression of Na+/H+ antiporter and K+ uptake system proteins and subsequently accumulate compatible solutes. However, alterations in the concentrations of metabolic intermediates functionally related to the early stage of the salt stress response have not been investigated. The halophilic cyanobacterium Synechococcus sp. PCC 7002 was subjected to salt shock with 0.5 and 1 M NaCl, then we performed metabolomics analysis by capillary electrophoresis/mass spectrometry (CE/MS) and gas chromatography/mass spectrometry (GC/MS) after cultivation for 1, 3, 10, and 24 h. Gene expression profiling using a microarray after 1 h of salt shock was also conducted. We observed suppression of the Calvin cycle and activation of glycolysis at both NaCl concentrations. However, there were several differences in the metabolic changes after salt shock following exposure to 0.5 M and 1 M NaCl: (i): the main compatible solute, glucosylglycerol, accumulated quickly at 0.5 M NaCl after 1 h but increased gradually for 10 h at 1 M NaCl; (ii) the oxidative pentose phosphate pathway and the tricarboxylic acid cycle were activated at 0.5 M NaCl; and (iii) the multi-functional compound spermidine greatly accumulated at 1 M NaCl. Our results show that Synechococcus sp. PCC 7002 acclimated to different levels of salt through a salt stress response involving the activation of different metabolic pathways.
UR - http://www.scopus.com/inward/record.url?scp=85076264667&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85076264667&partnerID=8YFLogxK
U2 - 10.3390/metabo9120297
DO - 10.3390/metabo9120297
M3 - Article
AN - SCOPUS:85076264667
VL - 9
JO - Metabolites
JF - Metabolites
SN - 2218-1989
IS - 12
M1 - 297
ER -