Side force reduction of cone-cylinder using microballoon array actuator

Tzong Shyng Leu, Jeng Ren Chang, Pong Jeu Lu

研究成果: Article同行評審

6 引文 斯高帕斯(Scopus)

摘要

The reduction of side force acting on a cone-cylinder slender body using a microballoon array actuator is examined. This microballoon array actuator can be inflated to a height of approximately 1.2 mm on the curve surfaces of the slender body. Experimental results indicate that side forces can be significantly reduced by inflating actuators near the weak and strong separated vortex structures. The mechanism of side force reduction has been investigated via both hot-wire and surface pressure measurements. Interestingly, unlike the conventional methods of changing the vortices from asymmetric to symmetric pairing for side force reduction, a microballoon array actuator makes vortices more asymmetric. It was found that two mechanisms can characterize the reduction of side force. The first mechanism involves that the weak side vortex lifts off prematurely because the microballoon actuation replaces the vortex pair structures with a more asymmetrically positioned pattern, enabling the formation of a new (third) vortex in the near-wall region. The second mechanism involves the strength of the newly generated (third) vortex being able to be effectively controlled via the microballoon actuation. Microballoon actuators can effectively alter the evolution of the new (third) near-wall vortex structure.

原文English
頁(從 - 到)844-852
頁數9
期刊Journal of Propulsion and Power
21
發行號5
DOIs
出版狀態Published - 2005

All Science Journal Classification (ASJC) codes

  • 航空工程
  • 燃料技術
  • 機械工業
  • 空間與行星科學

指紋

深入研究「Side force reduction of cone-cylinder using microballoon array actuator」主題。共同形成了獨特的指紋。

引用此