Simulation study of surface plasmon polaritons on grooved metal films - Using particle-in-cell method

研究成果: Conference article同行評審


The phenomenon of resonant tunneling through thin metal films with periodic narrow grooves is attributed to excitation of the surface plasmon (SP) via the periodic groove structure coupler at the metal surface. In this paper, we will use the particle-in-cell (PIC) plasma simulation method to study this SP-mediated optical tunneling. The PIC method is a time-domain scheme to calculate self-consistently the interaction between the electromagnetic fields and the plasma particles. At the beginning of simulation, the mobile electrons and immobile positive ions are uniformly distributed in the thin Gaussian-shaped-grooved silver film with the plasma density calculated from silver's plasma frequency. The momentum collision-frequency method is employed to model the collision dissipation. For normally incident TM-polarized wave, the transmission coefficients have the maximum values at the LSP resonant modes, similar to the results predicted by Drude model, except for with lower transmission coefficients. Due to the electron dynamics considered in the PIC method, the plasma energy and the trajectories can be monitored during the simulation. The change of the averaged plasma energy with time exhibits some ripple-like patterns, which comes from various competing processes of heating and cooling. But the temperature of the plasma has little effect on the transmission coefficient and the wave tunneling.

頁(從 - 到)1-8
期刊Proceedings of SPIE - The International Society for Optical Engineering
出版狀態Published - 2005
事件Plasmonic Nanoimaging and Nanofabrication - San Diego, CA, United States
持續時間: 2005 8月 32005 8月 4

All Science Journal Classification (ASJC) codes

  • 電子、光磁材料
  • 凝聚態物理學
  • 電腦科學應用
  • 應用數學
  • 電氣與電子工程


深入研究「Simulation study of surface plasmon polaritons on grooved metal films - Using particle-in-cell method」主題。共同形成了獨特的指紋。