Single-pulsed electromagnetic field therapy increases osteogenic differentiation through Wnt signaling pathway and sclerostin downregulation

Chih Chun Lin, Ru Wei Lin, Chih Wei Chang, Gwo Jaw Wang, Kuo An Lai

研究成果: Article同行評審

27 引文 斯高帕斯(Scopus)

摘要

Pulsed electromagnetic field (PEMF) therapy has been used for more than three decades to treat bone diseases. The main complaint about using PEMF is that it is time-consuming. Previously, we showed single-pulsed electromagnetic field (SPEMF) applied for 3min daily increased osteogenic differentiation of mesenchymal stem cells and accelerated bone growth in a long bone defect model. In the current study, we investigated the mechanism of SPEMF to increase osteogenic differentiation in osteoblastic cells. We found that both short-term (SS) and long-term (SL) SPEMF treatment increased mineralization, while alkaline phosphatase (ALP) activity increased during the first 5 days of SPEMF treatment. SS treatment increased gene expression of Wnt1, Wnt3a, Wnt10b, Fzd9, ALP, and Bmp2. Also, SPEMF inhibited sclerostin after 5 days of treatment, and that inhibition was more significant with SL treatment. SL SPEMF increased expression of parathyroid hormone-related protein (PTHrP) but decreased expression of Sost gene, which encodes sclerostin. Together, the early osteogenic effect of SPEMF utilizes the canonical Wnt signaling pathway while the inhibitory effect of long-term SPEMF on sclerostin may be attributable to PTHrP upregulation. This study enhances our understanding of cellular mechanisms to support the previous finding and may provide new insight for clinical applications.

原文English
頁(從 - 到)494-505
頁數12
期刊Bioelectromagnetics
36
發行號7
DOIs
出版狀態Published - 2015 10月 1

All Science Journal Classification (ASJC) codes

  • 生物物理學
  • 生理學
  • 放射學、核子醫學和影像學

指紋

深入研究「Single-pulsed electromagnetic field therapy increases osteogenic differentiation through Wnt signaling pathway and sclerostin downregulation」主題。共同形成了獨特的指紋。

引用此