Solute Diffusivity and Local Free Volume in Cross-Linked Polymer Network: Implication of Optimizing the Conductivity of Polymer Electrolyte

Yi Chen Tsai, Chi Cheng Chiu

研究成果: Article同行評審

2 引文 斯高帕斯(Scopus)

摘要

The diffusion of small molecules or ions within polymeric materials is critical for their applications, such as polymer electrolytes. Cross-linking has been one of the common strategies to modulate solute diffusivity and a polymer’s mechanical properties. However, various studies have shown different effects of cross-linking on altering the solute transports. Here, we utilized coarse-grained molecular dynamics simulation to systematically analyze the effects of cross-linking and polymer rigidity of solute diffusive behaviors. Above the glass transition temperature Tg, the solute diffusion followed the Vogel–Tammann–Fulcher (VTF) equation, D = D0 e−Ea/R(T−T0). Other than the conventional compensation relation between the activation energy Ea and the pre-exponential factor D0, we also identified a correlation between Ea and Vogel temperature T0. We further characterized an empirical relation between T0 and cross-linking density. Integrating the newly identified correlations among the VTF parameters, we formulated a relation between solute diffusion and the cross-linking density. The combined results proposed the criteria for the optimal solute diffusivity in cross-linked polymers, providing generic guidance for novel polymer electrolyte design.

原文English
文章編號2061
期刊Polymers
14
發行號10
DOIs
出版狀態Published - 2022 5月 1

All Science Journal Classification (ASJC) codes

  • 化學 (全部)
  • 聚合物和塑料

指紋

深入研究「Solute Diffusivity and Local Free Volume in Cross-Linked Polymer Network: Implication of Optimizing the Conductivity of Polymer Electrolyte」主題。共同形成了獨特的指紋。

引用此