Spanning trees on lattices and integral identities

Shu Chiuan Chang, Wenya Wang

研究成果: Article同行評審

22 引文 斯高帕斯(Scopus)

摘要

For a lattice Λ with n vertices and dimension d equal to or higher than 2, the number of spanning trees NST(Λ) increases asymptotically as exp(nzΛ) in the thermodynamic limit. We present exact integral expressions for the asymptotic growth constant z Λ for spanning trees on several lattices. By taking different unit cells in the calculation, many integral identities can be obtained. We also give zΛ(p) on the homeomorphic expansion of k-regular lattices with p vertices inserted on each edge.

原文English
文章編號001
頁(從 - 到)10263-10275
頁數13
期刊Journal of Physics A: Mathematical and General
39
發行號33
DOIs
出版狀態Published - 2006 8月 18

All Science Journal Classification (ASJC) codes

  • 統計與非線性物理學
  • 數學物理學
  • 一般物理與天文學

指紋

深入研究「Spanning trees on lattices and integral identities」主題。共同形成了獨特的指紋。

引用此