Spanning trees on two-dimensional lattices with more than one type of vertex

研究成果: Article同行評審

4 引文 斯高帕斯(Scopus)

摘要

For a two-dimensional lattice Λ with n vertices, the number of spanning trees NST(Λ) grows asymptotically as exp(nz Λ) in the thermodynamic limit. We present an exact integral expression and a numerical value for the entropy (asymptotic growth constant) zΛ for spanning trees on 19 two-dimensional lattices with more than one type of vertex given in O'Keeffe and Hyde (1980 Philos. Trans. R. Soc. A 295 553). Especially, an exact closed-form expression for the entropy is derived for net 14, and the entropies of net 27 and the triangle lattice have the simple relation z27 = (ztri + ln 4)/4. Some integral identities are also obtained.

原文English
文章編號015208
期刊Journal of Physics A: Mathematical and Theoretical
42
發行號1
DOIs
出版狀態Published - 2009

All Science Journal Classification (ASJC) codes

  • 統計與非線性物理學
  • 統計與概率
  • 建模與模擬
  • 數學物理學
  • 一般物理與天文學

指紋

深入研究「Spanning trees on two-dimensional lattices with more than one type of vertex」主題。共同形成了獨特的指紋。

引用此