Speaker clustering using decision tree-based phone cluster models with multi-space probability distributions

Han Ping Shen, Jui Feng Yeh, Chung Hsien Wu

研究成果: Article同行評審

6 引文 斯高帕斯(Scopus)

摘要

This paper presents an approach to speaker clustering using decision tree-based phone cluster models (DT-PCMs). In this approach, phone clustering is first applied to construct the universal phone cluster models to accommodate acoustic characteristics from different speakers. Since pitch feature is highly speaker-related and beneficial for speaker identification, the decision trees based on multi-space probability distributions (MSDs), useful to model both pitch and cepstral features for voiced and unvoiced speech simultaneously, are constructed. In speaker clustering based on DT-PCMs, contextual, phonetic, and prosodic features of each input speech segment is used to select the speaker-related MSDs from the MSD decision trees to construct the initial phone cluster models. The maximum-likelihood linear regression (MLLR) method is then employed to adapt the initial models to the speaker-adapted phone cluster models according to the input speech segment. Finally, the agglomerative clustering algorithm is applied on all speaker-adapted phone cluster models, each representing one input speech segment, for speaker clustering. In addition, an efficient estimation method for phone model merging is proposed for model parameter combination. Experimental results show that the MSD-based DT-PCMs outperform the conventional GMM- and HMM-based approaches for speaker clustering on the RT09 tasks.

原文English
文章編號5613154
頁(從 - 到)1289-1300
頁數12
期刊IEEE Transactions on Audio, Speech and Language Processing
19
發行號5
DOIs
出版狀態Published - 2011

All Science Journal Classification (ASJC) codes

  • 聲學與超音波
  • 電氣與電子工程

指紋

深入研究「Speaker clustering using decision tree-based phone cluster models with multi-space probability distributions」主題。共同形成了獨特的指紋。

引用此