Spectral unmixing for the classification of hyperspectral images

研究成果: Conference article同行評審

8 引文 斯高帕斯(Scopus)


Spectral mixing is inherent in any finite-resolution digital imagery of a heterogeneous surface, so that mixed pixels are inevitably created when multispectral images are scanned. Solving the spectral mixture problem is, therefore, involved in image classification, referring to the techniques of spectral unmixing. The invention of imaging spectrometers especially promotes the potential of applying spectral unmixing for sub-pixel classification. This paper investigates two spectral unmixing techniques: the least squares (LS) unmixing and the matched filter (MF) unmixing. Experiments with a set of AVIRIS data were carried out to evaluate the performance of spectral unmixing. The MF unmixing method proved itself to be an effective technique in classifying a hyperspectral image by showing a 90% classification accuracy. Whereas, the LS unmixing technique did not show promising results, when it was applied to the original bands of the test image. The maximum noise fraction (MNF) transformation, however, is found to be helpful to promote the performance of the LS unmixing. Applying the LS unmixing to the MNF transformed images can improve the classification accuracy for about 20%.

頁(從 - 到)1532-1538
期刊International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
出版狀態Published - 2000
事件19th International Congress for Photogrammetry and Remote Sensing, ISPRS 2000 - Amsterdam, Netherlands
持續時間: 2000 七月 162000 七月 23

All Science Journal Classification (ASJC) codes

  • 資訊系統
  • 地理、規劃與發展


深入研究「Spectral unmixing for the classification of hyperspectral images」主題。共同形成了獨特的指紋。