TY - JOUR
T1 - Stochastic construction time-cost trade-off analysis
AU - Feng, Chung Wei
AU - Liu, Liang
AU - Burns, Scott A.
N1 - Copyright:
Copyright 2004 Elsevier Science B.V., Amsterdam. All rights reserved.
PY - 2000/4
Y1 - 2000/4
N2 - Traditional time-cost trade-off analysis assumes that the time and cost of an option within an activity are deterministic. However, in reality the time and cost are uncertain. Therefore, in analyzing the time-cost trade-off problem, uncertainties should be considered when minimizing project duration or cost. Simulation techniques are useful for analyzing stochastic effects, but a general strategy/algorithm is needed to guide the analysis to obtain optimal solutions. This paper presents a hybrid approach that combines simulation techniques and genetic algorithms to solve the time-cost trade-off problem under uncertainty. The results show that genetic algorithms can be integrated with simulation techniques to provide an efficient and practical means of obtaining optimal project schedules while assessing the associated risks in terms of time and cost of a construction project. This new approach provides construction engineers with a new way of analyzing construction time/cost decisions in a more realistic manner. Historical time/cost data and available options to complete a project can be modeled, so that construction engineers can identify the best strategies to take to complete the project at minimum time and cost. Also, what-if scenarios can be explored to decide the desired/optimal time and/or cost in planning and executing project activities.
AB - Traditional time-cost trade-off analysis assumes that the time and cost of an option within an activity are deterministic. However, in reality the time and cost are uncertain. Therefore, in analyzing the time-cost trade-off problem, uncertainties should be considered when minimizing project duration or cost. Simulation techniques are useful for analyzing stochastic effects, but a general strategy/algorithm is needed to guide the analysis to obtain optimal solutions. This paper presents a hybrid approach that combines simulation techniques and genetic algorithms to solve the time-cost trade-off problem under uncertainty. The results show that genetic algorithms can be integrated with simulation techniques to provide an efficient and practical means of obtaining optimal project schedules while assessing the associated risks in terms of time and cost of a construction project. This new approach provides construction engineers with a new way of analyzing construction time/cost decisions in a more realistic manner. Historical time/cost data and available options to complete a project can be modeled, so that construction engineers can identify the best strategies to take to complete the project at minimum time and cost. Also, what-if scenarios can be explored to decide the desired/optimal time and/or cost in planning and executing project activities.
UR - http://www.scopus.com/inward/record.url?scp=0034172005&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034172005&partnerID=8YFLogxK
U2 - 10.1061/(ASCE)0887-3801(2000)14:2(117)
DO - 10.1061/(ASCE)0887-3801(2000)14:2(117)
M3 - Article
AN - SCOPUS:0034172005
SN - 0887-3801
VL - 14
SP - 117
EP - 126
JO - Journal of Computing in Civil Engineering
JF - Journal of Computing in Civil Engineering
IS - 2
ER -