TY - JOUR
T1 - Stratification of amyotrophic lateral sclerosis patients
T2 - A crowdsourcing approach
AU - The ALS Stratification Consortium
AU - Kueffner, Robert
AU - Zach, Neta
AU - Bronfeld, Maya
AU - Norel, Raquel
AU - Atassi, Nazem
AU - Balagurusamy, Venkat
AU - Di Camillo, Barbara
AU - Chio, Adriano
AU - Cudkowicz, Merit
AU - Dillenberger, Donna
AU - Garcia-Garcia, Javier
AU - Hardiman, Orla
AU - Hoff, Bruce
AU - Knight, Joshua
AU - Leitner, Melanie L.
AU - Li, Guang
AU - Mangravite, Lara
AU - Norman, Thea
AU - Wang, Liuxia
AU - Xiao, Jinfeng
AU - Fang, Wen Chieh
AU - Peng, Jian
AU - Yang, Chen
AU - Chang, Huan Jui
AU - Stolovitzky, Gustavo
AU - Alkallas, Rached
AU - Anghel, Catalina
AU - Avril, Jeanne
AU - Bacardit, Jaume
AU - Balser, Barbara
AU - Balser, John
AU - Bar-Sinai, Yoav
AU - Ben-David, Noa
AU - Ben-Zion, Eyal
AU - Bliss, Robin
AU - Cai, Jialu
AU - Chernyshev, Anatoly
AU - Chiang, Jung Hsien
AU - Chicco, Davide
AU - Corriveau, Bhavna Ahuja Nicole
AU - Dai, Junqiang
AU - Deshpande, Yash
AU - Desplats, Eve
AU - Durgin, Joseph S.
AU - Espiritu, Shadrielle Melijah G.
AU - Fan, Fan
AU - Fevrier, Philippe
AU - Fridley, Brooke L.
AU - Godzik, Adam
AU - Golińska, Agnieszka
N1 - Funding Information:
We are grateful to the following people for their important assistance with this manuscript: The clinicians and researchers behind the Irish and Italian ALS registers and the pharmaceutical companies which provided data to the PRO-ACT dataset, that enabled this entire endeavor, the hundreds of participants on the crowdfunding effort that provided this challenge’s award. Prof. David Schoenfeld for his assistance with statistical considerations, and, of course, the solvers who participated in the challenge and the patients who inspired this effort. Data used in the preparation of this article were obtained from the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) Database. As such, the following organizations and individuals within the PRO-ACT Consortium contributed to the design and implementation of the PRO-ACT Database and/or provided data, but did not participate in the analysis of the data or the writing of this report: Neurological Clinical Research Institute at MGH, Northeast ALS Consortium, Novartis, Prize4Life Israel, Regeneron Pharmaceuticals Inc., Sanofi, Teva Pharmaceutical Industries Ltd.
Publisher Copyright:
© The Author(s) 2019.
PY - 2019
Y1 - 2019
N2 - Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease where substantial heterogeneity in clinical presentation urgently requires a better stratification of patients for the development of drug trials and clinical care. In this study we explored stratification through a crowdsourcing approach, the DREAM Prize4Life ALS Stratification Challenge. Using data from >10,000 patients from ALS clinical trials and 1479 patients from community-based patient registers, more than 30 teams developed new approaches for machine learning and clustering, outperforming the best current predictions of disease outcome. We propose a new method to integrate and analyze patient clusters across methods, showing a clear pattern of consistent and clinically relevant sub-groups of patients that also enabled the reliable classification of new patients. Our analyses reveal novel insights in ALS and describe for the first time the potential of a crowdsourcing to uncover hidden patient sub-populations, and to accelerate disease understanding and therapeutic development.
AB - Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease where substantial heterogeneity in clinical presentation urgently requires a better stratification of patients for the development of drug trials and clinical care. In this study we explored stratification through a crowdsourcing approach, the DREAM Prize4Life ALS Stratification Challenge. Using data from >10,000 patients from ALS clinical trials and 1479 patients from community-based patient registers, more than 30 teams developed new approaches for machine learning and clustering, outperforming the best current predictions of disease outcome. We propose a new method to integrate and analyze patient clusters across methods, showing a clear pattern of consistent and clinically relevant sub-groups of patients that also enabled the reliable classification of new patients. Our analyses reveal novel insights in ALS and describe for the first time the potential of a crowdsourcing to uncover hidden patient sub-populations, and to accelerate disease understanding and therapeutic development.
UR - http://www.scopus.com/inward/record.url?scp=85060520844&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85060520844&partnerID=8YFLogxK
U2 - 10.1038/s41598-018-36873-4
DO - 10.1038/s41598-018-36873-4
M3 - Article
C2 - 30679616
AN - SCOPUS:85060520844
SN - 2045-2322
VL - 9
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 690
ER -