Strengthening the cohomological crepant resolution conjecture for Hilbert-Chow morphisms

研究成果: Article同行評審

1 引文 斯高帕斯(Scopus)

摘要

Given any smooth toric surface S, we prove a SYM-HILB correspondence which relates the 3-point, degree zero, extended Gromov-Witten invariants of the n-fold symmetric product stack [Symn (S)] of S to the 3-point extremal Gromov-Witten invariants of the Hilbert scheme Hilbn(S) of n points on S. As we do not specialize the values of the quantum parameters involved, this result proves a strengthening of Ruan's Cohomological Crepant Resolution Conjecture for the Hilbert-Chow morphism Hilbn(S) → Symn(S) and yields a method of reconstructing the cup product for Hilbn(S) from the orbifold invariants of [Symn(S)].

原文English
頁(從 - 到)45-72
頁數28
期刊Mathematische Annalen
356
發行號1
DOIs
出版狀態Published - 2013 一月 1

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

指紋 深入研究「Strengthening the cohomological crepant resolution conjecture for Hilbert-Chow morphisms」主題。共同形成了獨特的指紋。

引用此