摘要
We present the first in situ transmission electron microscope (TEM) study of extended sliding of diamond-like carbon (DLC) on diamond. We show how the tribological properties of amorphous carbon (a-C) reach their limit by exploring the onset of wear for the harsh condition of sliding against diamond in vacuum. A particularly hard, hydrogen-free member of the DLC family, a-C is of wide technological interest, but the mechanisms by which damage occurs during tribological contact are not well understood. Real-time TEM imaging of the nanoscale contact area provides insight into wear mechanisms and damage. We show that at high normal stresses with full sliding contributing to additional shear stress, the initially low adhesion of the a-C-diamond interface rapidly increases at a rate greater than is seen in similar silicon-diamond contact studies. We propose that high contact stresses wear away a relatively low surface energy sp2-rich layer on the outer a-C surface, exposing sp3-rich sub-layers which can form covalent bonds that require more tensile force to be broken, leading to higher adhesion and an acceleration of wear.
原文 | English |
---|---|
頁(從 - 到) | 230-241 |
頁數 | 12 |
期刊 | Carbon |
卷 | 193 |
DOIs | |
出版狀態 | Published - 2022 6月 30 |
All Science Journal Classification (ASJC) codes
- 化學 (全部)
- 材料科學(全部)