Structure of spanning trees on the two-dimensional Sierpinski gasket

Shu Chiuan Chang, Lung Chi Chen

研究成果: Article同行評審

6 引文 斯高帕斯(Scopus)

摘要

Consider spanning trees on the two-dimensional Sierpinski gasket SG(n) where stage n is a non-negative integer. For any given vertex x of SG(n), we derive rigorously the probability distribution of the degree j ε f1; 2; 3; 4g at the vertex and its value in the infinite n limit. Adding up such probabilities of all the vertices divided by the number of vertices, we obtain the average probability distribution of the degree j. The corresponding limiting distribution Φj gives the average probability that a vertex is connected by 1, 2, 3 or 4 bond(s) among all the spanning tree configurations. They are rational numbers given as Φ1 = 10957=40464, Φ2 = 6626035=13636368, Φ3 = 2943139=13636368, Φ4 = 124895=4545456.

原文English
頁(從 - 到)151-176
頁數26
期刊Discrete Mathematics and Theoretical Computer Science
12
發行號3
出版狀態Published - 2010 12月 6

All Science Journal Classification (ASJC) codes

  • 理論電腦科學
  • 一般電腦科學
  • 離散數學和組合

指紋

深入研究「Structure of spanning trees on the two-dimensional Sierpinski gasket」主題。共同形成了獨特的指紋。

引用此