Study of GaN-Based Light-Emitting Diode (LED) with a Hybrid Surface Structure

Wei Cheng Chen, Jing Shiuan Niu, I. Ping Liu, Yu Lin Lee, Shiou Ying Cheng, Der Feng Guo, Wen Chau Liu

研究成果: Article同行評審


A hybrid surface structure, incorporating an Ag-grid-based aluminum-doped zinc oxide (AZO) transparent conductive layer (TCL), a microhole array, 45°-sawtooth sidewalls, and an SiO2 nanoparticle (NP)/microsphere (MS) passivation layer, is proposed for the characteristic improvement of GaN-based light-emitting diodes (LEDs). In order to optimize the contact behavior between the AZO and p-GaN layers, a 2-D Ag grid is applied on the contact interface. Because series resistance Rs is reduced by the conductive Ag-grid pattern, a lower forward voltage and a better current spreading ability are obtained. Compared with a conventional GaN LED with an injection current of 200 mA, the proposed device exhibits a forward voltage of 4.01 V, reduced from 4.34 V, and presents 33%, 34.4%, 45.4%, 33.1%, and 45.3% enhancements in the light output power (LOP), luminous flux, luminous efficacy, external quantum efficiency (EQE), and wall-plug efficiency (WPE), respectively. Moreover, a more effective current spreading in the light emission mapping image and a higher intensity in the far-field pattern are achieved. Improvements of both electrical and optical properties verify that the proposed device is promising for practical applications in solid-state lighting.

頁(從 - 到)4953-4957
期刊IEEE Transactions on Electron Devices
出版狀態Published - 2020 十一月

All Science Journal Classification (ASJC) codes

  • 電子、光磁材料
  • 電氣與電子工程


深入研究「Study of GaN-Based Light-Emitting Diode (LED) with a Hybrid Surface Structure」主題。共同形成了獨特的指紋。