TY - JOUR
T1 - Study of grain boundary contribution and enhancement of magnetoresistance in La0.67Ca0.33MnO3/V2O5 composites
AU - Karmakar, Shilpi
AU - Taran, S.
AU - Chaudhuri, B. K.
AU - Sakata, H.
AU - Sun, C. P.
AU - Huang, C. L.
AU - Yang, H. D.
PY - 2005/10/21
Y1 - 2005/10/21
N2 - Electrical transport (90-300 K) and magnetic (5-375 K) properties of the La0.67Ca0.33MnO3 + x% V2O 5 (x ≤ 0, 2, 5, 15 and 30) type magnetic-nonmagnetic composite system show appreciable grain boundary contribution. These composites, except for the one with x ≤ 30%, show metal-insulator transitions at T ≤ T p which decrease with increasing V2O5 concentration. The high temperature (T > Tp) semiconducting part of the resistivity (ρ) data follow a small polaron hopping conduction mechanism. The magnetoresistance (MR) in this system increases with increasing V2O5 content, showing a maximum value (25% at 93 K and field H ≤ 1.15 T) for the sample with x ≤ 15%. Spin polarization is considered to be responsible for such an increase of MR. Neither thermoelectric power (between 90 and 300 K) nor magnetization data indicate any noticeable change of the Curie temperature (TC) with change of x, suggesting that V2O5 remains at the grain boundary. The complex impedance (Z*) of the composite system, measured over a frequency range of 0.01 kHz-13 MHz, at 300 K shows strong frequency dependence and the impedance plane plots (Z′-Z″) are semicircular for different V2O5 content. An equivalent resistor-capacitor circuit (Rg (Rgb Cgb)) has been proposed to explain the impedance results in this composite system.
AB - Electrical transport (90-300 K) and magnetic (5-375 K) properties of the La0.67Ca0.33MnO3 + x% V2O 5 (x ≤ 0, 2, 5, 15 and 30) type magnetic-nonmagnetic composite system show appreciable grain boundary contribution. These composites, except for the one with x ≤ 30%, show metal-insulator transitions at T ≤ T p which decrease with increasing V2O5 concentration. The high temperature (T > Tp) semiconducting part of the resistivity (ρ) data follow a small polaron hopping conduction mechanism. The magnetoresistance (MR) in this system increases with increasing V2O5 content, showing a maximum value (25% at 93 K and field H ≤ 1.15 T) for the sample with x ≤ 15%. Spin polarization is considered to be responsible for such an increase of MR. Neither thermoelectric power (between 90 and 300 K) nor magnetization data indicate any noticeable change of the Curie temperature (TC) with change of x, suggesting that V2O5 remains at the grain boundary. The complex impedance (Z*) of the composite system, measured over a frequency range of 0.01 kHz-13 MHz, at 300 K shows strong frequency dependence and the impedance plane plots (Z′-Z″) are semicircular for different V2O5 content. An equivalent resistor-capacitor circuit (Rg (Rgb Cgb)) has been proposed to explain the impedance results in this composite system.
UR - http://www.scopus.com/inward/record.url?scp=25844442494&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=25844442494&partnerID=8YFLogxK
U2 - 10.1088/0022-3727/38/20/001
DO - 10.1088/0022-3727/38/20/001
M3 - Article
AN - SCOPUS:25844442494
VL - 38
SP - 3757
EP - 3763
JO - Journal Physics D: Applied Physics
JF - Journal Physics D: Applied Physics
SN - 0022-3727
IS - 20
ER -