Surface characterization and in vitro platelet compatibility study of surface sulfonated chitosan membrane with amino group protection-deprotection strategy

Hsi Yi Yeh, Jui Che Lin

研究成果: Article同行評審

38 引文 斯高帕斯(Scopus)

摘要

Glycosaminoglycans (GAGs) are the main components of the extracellular matrix (ECM). Studies have indicated that scaffolds modified by GAGs could improve cell proliferation and differentiation. Chitosan, the second-most abundant nature polysaccharide, has a structure similar to that of GAGs. Due to its relatively lower cost as compared to GAGs, many researchers have tried to incorporate sulfonate or carboxyl groups into the chitosan structure with the aim to form a GAG-like structure. However, these modifications were carried out on the reactive amino groups that were thought as the major character, resulting in special biological properties associated with chitosan. Such a decrease of amino-functional group density would very likely alter the specific biological properties of chitosan. Therefore, an amino group protection-deprotection strategy was explored in this study for surface sulfonation of chitosan membrane with the aim to imitate GAG structures. Various surface chemical characterization results, as well as surface zeta potential measurements have indicated that both sulfonate/sulfonic and amino functionalities were coexistent on the deprotected sulfonated chitosan specimen. In vitro platelet adhesion testing has shown that such a deprotected sulfonated chitosan membrane can increase the amount of platelet adhesion while keep those adhered remained unactivated. At the same time the presence of deprotected sulfonated chitosan film extended the plasma recalcification time value. With this protection-deprotection strategy, a further chemical grafting of bioactive molecules, such as RGD peptide, using the recovered amino functionalities, can be pursued on these sulfonated chitosan specimens.

原文English
頁(從 - 到)291-310
頁數20
期刊Journal of Biomaterials Science, Polymer Edition
19
發行號3
DOIs
出版狀態Published - 2008 3月 1

All Science Journal Classification (ASJC) codes

  • 生物物理學
  • 生物工程
  • 生物材料
  • 生物醫學工程

指紋

深入研究「Surface characterization and in vitro platelet compatibility study of surface sulfonated chitosan membrane with amino group protection-deprotection strategy」主題。共同形成了獨特的指紋。

引用此