摘要
We used a novel experimental setup to conduct the first synchrotron-based 61Ni Mössbauer spectroscopy measurements in the energy domain on Ni coordination complexes and metalloproteins. A representative set of samples was chosen to demonstrate the potential of this approach. 61NiCr2O4 was examined as a case with strong Zeeman splittings. Simulations of the spectra yielded an internal magnetic field of 44.6 T, consistent with previous work by the traditional 61Ni Mössbauer approach with a radioactive source. A linear Ni amido complex, 61Ni{N(SiMe3)Dipp}2, where Dipp = C6H3-2,6-iPr2, was chosen as a sample with an "extreme" geometry and large quadrupole splitting. Finally, to demonstrate the feasibility of metalloprotein studies using synchrotron-based 61Ni Mössbauer spectroscopy, we examined the spectra of 61Ni-substituted rubredoxin in reduced and oxidized forms, along with [Et4N]2[61Ni(SPh)4] as a model compound. For each of the above samples, a reasonable spectrum could be obtained in ∼1 d. Given that there is still room for considerable improvement in experimental sensitivity, synchrotron-based 61Ni Mössbauer spectroscopy appears to be a promising alternative to measurements with radioactive sources.
原文 | English |
---|---|
頁(從 - 到) | 6866-6872 |
頁數 | 7 |
期刊 | Inorganic Chemistry |
卷 | 55 |
發行號 | 14 |
DOIs | |
出版狀態 | Published - 2016 7月 18 |
All Science Journal Classification (ASJC) codes
- 物理與理論化學
- 無機化學