摘要
A core-shell structured FeCo-N@N-doped carbon derived from biomass waste (sugarcane and palm kernel shell) is facilely prepared by hydrothermal carbonization and NH3 microwave ammoxidation methods. The fabricated carbons are thoroughly characterized by a variety of analytical techniques. The electrochemical oxygen reduction reaction (ORR), methanol resistance and durability are also tested in alkaline electrolyte. Compared to the carbons without ammoxidation treatments, FeCo-N@N-doped carbons, which contain FeCo-N in the core (evidenced by X-ray absorption spectroscopy) and highly porous carbon (verified by N2 adsorption-desorption isotherms) in the shell, exhibit superior ORR performance. Among the FeCo-N@N-doped carbons, the sugarcane-derived FeCo-N@N-doped carbon has better ORR activity than palm kernel shell-derived FeCo-N@N-doped carbon, which may be due to the more exposed active FeCo-N sites. Accordingly, the sugarcane-derived FeCo-N@N-doped carbon with a FeCo alloy ratio of 1 : 1 shows a comparable activity (onset potential 0.91 V vs. RHE), a better stability (through a four-electron pathway) and excellent methanol tolerance as compared to commercially available Pt/C catalysts. These biowaste-derived carbons with a unique core-shell structure synthesized via a simple microwave-assisted ammoxidation route can provide a promising electrode for oxygen reduction in fuel cells.
原文 | English |
---|---|
頁(從 - 到) | 3949-3958 |
頁數 | 10 |
期刊 | Catalysis Science and Technology |
卷 | 10 |
發行號 | 12 |
DOIs | |
出版狀態 | Published - 2020 6月 21 |
All Science Journal Classification (ASJC) codes
- 催化