Tetrapodal ZnO nanomaterial synthesis for antibacterial fluoroethylene vinyl ether polymer coating

Yaowei Yeh, Pingching Wu, Jianfu Li, Shijie Wang, Juihsiung Huang, Kaoshu Chuang, Tsunglin Tsai, Liheng Kao

研究成果: Article同行評審

摘要

Antibacterial coatings can be nanofabricated to provide antimicrobial persistence, nanostructural tailoring, and superhydrophobicity. This study presents a method for preparing an effective antibacterial coating by introducing tetrapodal ZnO (T-ZnO) nanomaterials on a fluoroethylene vinyl ether polymer (FEVE). T-ZnO nanomaterials were as-synthesized by flame transport synthesis and characterized. The T-ZnO exhibited a tetrapodal micro- and nanostructure with four legs of ∼43 μm diameter, comprising 86.67 and 12.90 wt% of Zn and O, respectively. High-resolution images of a single leg with sharp whiskers exhibited well-developed crystallinity. The antibacterial capabilities of T-ZnO functional coatings were determined using a reaction solution consisting of FEVE directly soaked in various wt% of T-ZnO with ethyl acetate. The 10 wt% T-ZnO nanocomplex coating exhibited the best surface hydrophobicity, with a water contact angle of 155°. The proposed T-ZnO on a fluoroethylene polymer-based coating exhibited higher antibacterial efficacy toward Gram-positive S. Aureus and -negative E. Coli compared with a standard polymer-based coating. In examining cellular toxicity, no harm was found to NIH/3T3 cells using the CCK-8 assay. Hence, this study provides a simple method for preparing safe and effective antibacterial coatings for practical applications.

原文English
文章編號134435
期刊Materials Letters
344
DOIs
出版狀態Published - 2023 8月 1

All Science Journal Classification (ASJC) codes

  • 材料科學(全部)
  • 凝聚態物理學
  • 材料力學
  • 機械工業

指紋

深入研究「Tetrapodal ZnO nanomaterial synthesis for antibacterial fluoroethylene vinyl ether polymer coating」主題。共同形成了獨特的指紋。

引用此