The anticancer properties of iron core-gold shell nanoparticles in colorectal cancer cells

Ya Na Wu, Ping Ching Wu, Li Xing Yang, Kyle R. Ratinac, Pall Thordarson, Kristina A. Jahn, Dong Hwang Chen, Dar Bin Shieh, Filip Braet

研究成果: Article同行評審

27 引文 斯高帕斯(Scopus)

摘要

Previously, iron core-gold shell nanoparticles (Fe@Au) have been shown to possess cancer-preferential cytotoxicity in oral and colorectal cancer (CRC) cells. However, CRC cell lines are less sensitive to Fe@Au treatment when compared with oral cancer cell lines. In this research, Fe@Au are found to decrease the cell viability of CRC cell lines, including Caco-2, HT-29, and SW480, through growth inhibition rather than the induction of cell death. The cytotoxicity induced by Fe@Au in CRC cells uses different subcellular pathways to the mitochondria-mediated autophagy found in Fe@Au-treated oral cancer cells, OECM1. Interestingly, the Caco-2 cell line shows a similar response to OECM1 cells and is thus more sensitive to Fe@Au treatment than the other CRC cell lines studied. We have investigated the underlying cell resistance mechanisms of Fe@Au-treated CRC cells. The resistance of CRC cells to Fe@Au does not result from the total amount of Fe@Au internalized. Instead, the different amounts of Fe and Au internalized appear to determine the different response to treatment with Fe-only nanoparticles in Fe@Au-resistant CRC cells compared with the Fe@Au-sensitive OECM1 cells. The only moderately cytotoxic effect of Fe@Au nanoparticles on CRC cells, when compared to the highly sensitive OECM1 cells, appears to arise from the CRC cells' relative insensitivity to Fe, as is demonstrated by our Fe-only treatments. This is a surprising outcome, given that Fe has thus far been considered to be the "active" component of Fe@Au nanoparticles. Instead, we have found that the Au coatings, previously considered only as a passivating coating to protect the Fe cores from oxidation, significantly enhance the cytotoxicity of Fe@Au in certain CRC cells. Therefore, we conclude that both the Fe and Au in these core-shell nanoparticles are essential for the anticancer properties observed in CRC cells.

原文English
頁(從 - 到)3321-3331
頁數11
期刊International journal of nanomedicine
8
DOIs
出版狀態Published - 2013 8月 30

All Science Journal Classification (ASJC) codes

  • 生物物理學
  • 生物工程
  • 生物材料
  • 藥學科學
  • 藥物發現
  • 有機化學

指紋

深入研究「The anticancer properties of iron core-gold shell nanoparticles in colorectal cancer cells」主題。共同形成了獨特的指紋。

引用此