摘要
An artificial, targeted, light-activated nanoscissor (ATLANS) was developed for precision photonic cleavage of DNA at selectable target sequences. The ATLANS is comprised of nanoparticle core and a monolayer of hydrazone-modified triplex-forming oligonucleotides (TFOs), which recognize and capture the targeted DNA duplex. Upon photo-illumination (λ = 460 nm), the attached hydrazone scissor specifically cleaves the targeted DNA at a pre-designed nucleotide pair. Electrophoretic mobility shift and co-precipitation assays revealed sequence-specific binding with the short-fragment and long-form plasmid DNA of both TFO and TFO-nanoparticle probes. Upon photo-illumination, ATLANS introduced a precise double-stranded break 12. bp downstream the TFO binding sequence and down-regulated the target gene in HeLa cell system. Gold nanoparticles multiplexed the cutting efficiency and potential for simultaneous manipulation of multiple targets, as well as protected DNA from non-specific photo-damage. This photon-mediated DNA manipulation technology will facilitate high spatial and temporal precision in simultaneous silencing at the genome level, and advanced simultaneous manipulation of multiple targeted genes.
原文 | English |
---|---|
頁(從 - 到) | 6545-6554 |
頁數 | 10 |
期刊 | Biomaterials |
卷 | 31 |
發行號 | 25 |
DOIs | |
出版狀態 | Published - 2010 9月 |
All Science Journal Classification (ASJC) codes
- 生物工程
- 陶瓷和複合材料
- 生物物理學
- 生物材料
- 材料力學