TY - JOUR
T1 - The effect of propofol and sevoflurane on antioxidants and proinflammatory cytokines in a porcine ischemia-reperfusion model
AU - Hsiao, Hung Tsung
AU - Wu, Hung
AU - Huang, Pei Chi
AU - Tsai, Yu Chuang
AU - Liu, Yen Chin
N1 - Funding Information:
The authors would like to thank Alice Y.W. Chang and Julie Y.H. Chan for their helpful and important commentary and assistance for this work. The authors also want to give thanks to Chein-Chi Huang and Pao-Yen Lin for their help in the cell culture and animal study, respectively. This work was also partially supported by research grants from the National Cheng Kung University Hospital ( NCKUH95-86 ), Tainan, Taiwan.
Publisher Copyright:
Copyright © 2015, Taiwan Society of Anesthesiologists. Published by Elsevier Taiwan LLC.
PY - 2016/3/1
Y1 - 2016/3/1
N2 - Objectives: Ischemia-reperfusion (IR) features massive oxidative stress of tissues and cytokine response. Propofol and sevoflurane, both of which are commonly used anesthetics, are thought to have different antioxidant activities. The aim of this study is to delineate the influence of these two drugs on the production of free radicals and proinflammatory cytokines in IR conditions via in vitro and in vivo models. Methods: An in vitro IR model was performed by incubating porcine cells (including mononuclear cells, and coronary and aortic smooth muscle cells) with either propofol 25 μM or sevoflurane 2% in the hypoxia chamber (1% O2, 37°C) for 1 hour, followed by room temperature air for 2 hours. Reactive oxygen species (ROS) and tumor necrosis factor-α (TNF-α) were also measured via flow cytometry and enzyme-linked immunosorbent assay methods, respectively. Ten pigs were used for the in vivo study. After anesthesia with either propofol (10-15 mg/kg/h) or sevoflurane (2%), internal carotid and femoral arterial catheters were inserted for direct blood pressure monitoring and blood sampling. The IR models were produced via descending thoracic aorta clamping for 1 hour and declamping for 2 hours during the procedure for left ventricular assist device implantation. Blood serum was sampled from upper and lower body vessels for ROS and TNF-α evaluation via thiobarbituric acid reacting substances method and enzyme-linked immunosorbent assay, respectively. Results: The results showed significant reduction of both ROS and TNF-α levels in the propofol group in vitro IR model. However, there was no difference in lipid peroxidation and TNF-α level between propofol and sevoflurane for the in vivo IR model. Conclusion: We concluded that propofol, compared with sevoflurane, can significantly inhibit ROS formation on a cell level. In addition, propofol can significantly inhibit TNF-α formation of monocytes and coronary smooth muscle cells but not aortic smooth muscle cells.
AB - Objectives: Ischemia-reperfusion (IR) features massive oxidative stress of tissues and cytokine response. Propofol and sevoflurane, both of which are commonly used anesthetics, are thought to have different antioxidant activities. The aim of this study is to delineate the influence of these two drugs on the production of free radicals and proinflammatory cytokines in IR conditions via in vitro and in vivo models. Methods: An in vitro IR model was performed by incubating porcine cells (including mononuclear cells, and coronary and aortic smooth muscle cells) with either propofol 25 μM or sevoflurane 2% in the hypoxia chamber (1% O2, 37°C) for 1 hour, followed by room temperature air for 2 hours. Reactive oxygen species (ROS) and tumor necrosis factor-α (TNF-α) were also measured via flow cytometry and enzyme-linked immunosorbent assay methods, respectively. Ten pigs were used for the in vivo study. After anesthesia with either propofol (10-15 mg/kg/h) or sevoflurane (2%), internal carotid and femoral arterial catheters were inserted for direct blood pressure monitoring and blood sampling. The IR models were produced via descending thoracic aorta clamping for 1 hour and declamping for 2 hours during the procedure for left ventricular assist device implantation. Blood serum was sampled from upper and lower body vessels for ROS and TNF-α evaluation via thiobarbituric acid reacting substances method and enzyme-linked immunosorbent assay, respectively. Results: The results showed significant reduction of both ROS and TNF-α levels in the propofol group in vitro IR model. However, there was no difference in lipid peroxidation and TNF-α level between propofol and sevoflurane for the in vivo IR model. Conclusion: We concluded that propofol, compared with sevoflurane, can significantly inhibit ROS formation on a cell level. In addition, propofol can significantly inhibit TNF-α formation of monocytes and coronary smooth muscle cells but not aortic smooth muscle cells.
UR - http://www.scopus.com/inward/record.url?scp=84950105075&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84950105075&partnerID=8YFLogxK
U2 - 10.1016/j.aat.2015.11.002
DO - 10.1016/j.aat.2015.11.002
M3 - Article
C2 - 26688227
AN - SCOPUS:84950105075
SN - 2468-824X
VL - 54
SP - 6
EP - 10
JO - Asian Journal of Anesthesiology
JF - Asian Journal of Anesthesiology
IS - 1
ER -