The Evidence for Sparsentan-Mediated Inhibition of INa and IK(erg): Possibly Unlinked to Its Antagonism of Angiotensin II or Endothelin Type a Receptor

Tzu Hsien Chuang, Hsin Yen Cho, Sheng Nan Wu

研究成果: Article同行評審

5 引文 斯高帕斯(Scopus)


Sparsentan is viewed as a dual antagonist of endothelin type A (ETA) receptor and an-giotensin II (AngII) receptor and it could be beneficial in patients with focal segmental glomeru-losclerosis. Moreover, it could improve glomerular filtration rate and augment protective tissue remodeling in mouse models of focal segmental glomerulosclerosis. The ionic mechanisms through which it interacts with the magnitude and/or gating kinetics of ionic currents in excitable cells were not thoroughly investigated. Herein, we aimed to examine the effects of varying sparsentan concentrations on ionic currents residing in pituitary GH3 somatolactotrophs. From whole-cell current recordings made in GH3 cells, sparsentan (0.3–100 µM) differentially inhibited the peak and late components of voltage-gated Na+ current (INa). The IC50 value of sparsentan required to exert a reduction in peak and late INa in GH3 cells was 15.04 and 1.21 µM, respectively; meanwhile, the KD value estimated from its shortening in the slow component of INa inactivation time constant was 2.09 µM. The sparsentan (10 µM) presence did not change the overall current–voltage relationship of INa; however, the steady-state inactivation curve of the current was shifted to more negative potential in its presence (10 µM), with no change in the gating charge of the curve. The window INa activated by a brief upsloping ramp was decreased during exposure to sparsentan (10 µM); moreover, recovery of peak INa became slowed in its presence. The Tefluthrin (Tef)-stimulated resurgent INa activated in response to abrupt depolarization followed by the descending ramp pulse was additionally attenuated by subsequent application of sparsentan. In continued presence of Tef (3 µM) or β-pompilidotoxin (3 µM), further application of sparsentan (3 µM) reversed their stimulation of INa. However, sparsentan-induced inhibition of INa failed to be overcome by subsequent application of either endothelin 1 (1 µM) or angiotensin II (1 µM); moreover, in continued presence of endothelin (1 µM) or angiotensin II (1 µM), further addition of sparsentan (3 µM) effectively decreased peak INa. Additionally, the application of sparsentan (3 µM) inhibited the peak and late components of erg-mediated K+ current in GH3 cells, although it mildly decreased the amplitude of delayed-rectifier K+ current. Altogether, this study provides a distinct yet unidentified finding that sparsentan may perturb the amplitude or gating of varying ionic currents in excitable cells.

出版狀態Published - 2022 1月

All Science Journal Classification (ASJC) codes

  • 醫藥(雜項)
  • 生物化學、遺傳與分子生物學 (全部)


深入研究「The Evidence for Sparsentan-Mediated Inhibition of INa and IK(erg): Possibly Unlinked to Its Antagonism of Angiotensin II or Endothelin Type a Receptor」主題。共同形成了獨特的指紋。