TY - JOUR
T1 - THE IMPLEMENTATION OF SEMI-AUTOMATED ROAD SURFACE MARKINGS EXTRACTION SCHEMES UTILIZING MOBILE LASER SCANNED POINT CLOUDS FOR HD MAPS PRODUCTION
AU - Chang, Y. F.
AU - Chiang, K. W.
AU - Tsai, M. L.
AU - Lee, P. L.
AU - Zeng, J. C.
AU - El-Sheimy, N.
AU - Darweesh, H.
N1 - Publisher Copyright:
© Author(s) 2023.
PY - 2023/5/25
Y1 - 2023/5/25
N2 - As research on autonomous driving deepens, High-definition Maps (HD Maps) have gradually become an auxiliary information for the new generation of autonomous driving technology. Compared to traditional electronic navigation maps, HD Maps have higher accuracy requirements and more information. Multi-road environment information and road elements are included. In the production of HD Maps, the on-board Mobile Laser Scanning (MLS) system has the ability to quickly collect environmental information, with high precision, thus making the system a widely used data collection method today. However, subsequent map building, digitization, and other mapping work still rely on manual operation, which is time-consuming and laborious. Therefore, this research is dedicated to developing a semi-automatic algorithm to generate HD Maps from the acquired point cloud data. This research focuses on the extraction of road surface markings, using the Cloth Simulation Filter (CSF) to obtain the road surface point cloud to improve the extraction efficiency. The road markings are extracted using the characteristic of high intensity values, and the commonly used Otsu threshold filter in image processing is used to extract point clouds with high reflectance intensity, eliminating the need for manual setting of point clouds. And based on geometric conditions, the objects are classified, such as arrow lines, pedestrian crossings, stop lines, and lane lines, which are convenient for further mapping HD Maps.
AB - As research on autonomous driving deepens, High-definition Maps (HD Maps) have gradually become an auxiliary information for the new generation of autonomous driving technology. Compared to traditional electronic navigation maps, HD Maps have higher accuracy requirements and more information. Multi-road environment information and road elements are included. In the production of HD Maps, the on-board Mobile Laser Scanning (MLS) system has the ability to quickly collect environmental information, with high precision, thus making the system a widely used data collection method today. However, subsequent map building, digitization, and other mapping work still rely on manual operation, which is time-consuming and laborious. Therefore, this research is dedicated to developing a semi-automatic algorithm to generate HD Maps from the acquired point cloud data. This research focuses on the extraction of road surface markings, using the Cloth Simulation Filter (CSF) to obtain the road surface point cloud to improve the extraction efficiency. The road markings are extracted using the characteristic of high intensity values, and the commonly used Otsu threshold filter in image processing is used to extract point clouds with high reflectance intensity, eliminating the need for manual setting of point clouds. And based on geometric conditions, the objects are classified, such as arrow lines, pedestrian crossings, stop lines, and lane lines, which are convenient for further mapping HD Maps.
UR - http://www.scopus.com/inward/record.url?scp=85162105587&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85162105587&partnerID=8YFLogxK
U2 - 10.5194/isprs-archives-XLVIII-1-W1-2023-93-2023
DO - 10.5194/isprs-archives-XLVIII-1-W1-2023-93-2023
M3 - Conference article
AN - SCOPUS:85162105587
SN - 1682-1750
VL - 48
SP - 93
EP - 100
JO - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
JF - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
IS - 1/W1-2023
T2 - 12th International Symposium on Mobile Mapping Technology, MMT 2023
Y2 - 24 May 2023 through 26 May 2023
ER -