The mechanisms that enable arm motion to enhance vertical jump performance-A simulation study

Kuangyou B. Cheng, Chih Hung Wang, Hui Chuan Chen, Chin Dai Wu, Hung Ta Chiu

研究成果: Article同行評審

46 引文 斯高帕斯(Scopus)

摘要

The reasons why using the arms can increase standing vertical jump height are investigated by computer simulations. The human models consist of four/five segments connected by frictionless joints. The head-trunk-arms act as a fourth segment in the first model while the arms become a fifth segment in the second model. Planar model movement is actuated by joint torque generators. Each joint torque is the product of three variable functions of activation level, angular velocity dependence, and maximum isometric torque varying with joint angle. Simulations start from a balanced initial posture and end at jump takeoff. Jump height is maximized by finding the optimal combination of joint activation timings. Arm motion enhances jumping performance by increasing mass center height and vertical takeoff velocity. The former and latter contribute about 1/3 and 2/3 to the increased height, respectively. Durations in hip torque generation and ground contact period are lengthened by swinging the arms. Theories explaining the performance enhancement caused by arms are examined. The force transmission theory is questionable because shoulder joint force due to arm motion does not precisely reflect the change in vertical ground reaction force. The joint torque/work augmentation theory is acceptable only at the hips but not at the knees and ankles because only hip joint work is considerably increased. The pull/impart energy theory is also acceptable because shoulder joint work is responsible for about half of the additional energy created by arm swings.

原文English
頁(從 - 到)1847-1854
頁數8
期刊Journal of Biomechanics
41
發行號9
DOIs
出版狀態Published - 2008

All Science Journal Classification (ASJC) codes

  • 生物物理學
  • 骨科和運動醫學
  • 生物醫學工程
  • 復健

指紋

深入研究「The mechanisms that enable arm motion to enhance vertical jump performance-A simulation study」主題。共同形成了獨特的指紋。

引用此